

DOSA

DENIS O'SULLIVAN & ASSOCIATES
CONSULTING ENGINEERS

INFRASTRUCTURE REPORT,
OLD WHITECHURCH ROAD,
KILNAP, CORK

INFRASTRUCTURE REPORT

DATE 25/06/2024

REVISION 4

JOB NO. 6254

DOCUMENT CONTROL

PROJECT NAME: Infrastructure Report, Old Whitechurch Road, Kilnap, Cork

PROJECT NUMBER: 6254

REVISION	DATE	FILE NAME: Infrastructure Report, Old Whitechurch Road, Kilnap, Cork			
4	25.06.2024	DESCRIPTION: Infrastructure Report			
			PREPARED	CHECKED	APPROVED
		INITIAL	SO'G	SO'G	SO'G
		DATE	25.06.2024	25.06.2024	25.06.2024
#	Insert Date	FILE NAME:			
		DESCRIPTION: Insert description			
			PREPARED	CHECKED	APPROVED
		INITIAL	Initials	Initials	Initials
		DATE	Insert Date	Insert Date	Insert Date
#	Insert Date	FILE NAME:			
		DESCRIPTION: Insert description			
			PREPARED	CHECKED	APPROVED
		INITIAL	Initials	Initials	Initials
		DATE	Insert Date	Insert Date	Insert Date
#	Insert Date	FILE NAME:			
		DESCRIPTION: Insert description			
			PREPARED	CHECKED	APPROVED
		INITIAL	Initials	Initials	Initials
		DATE	Insert Date	Insert Date	Insert Date

Contents

1	Introduction	1
1.1	Site Description.....	1
1.2	Development Description	2
1.3	Site Topography	3
2	Surface Water Design Overview	4
2.1	Surface Water Drainage Network	4
2.1.1	Existing Infrastructure.....	4
2.1.2	Proposed Stormwater Infrastructure.....	7
2.2	Design Criteria:	8
2.3	Catchments.....	9
3	Foul Sewer System.....	10
3.1.1	Existing Infrastructure.....	10
3.2	Foul Sewer Design	10
3.2.1	Development Breakdown	11
3.3	Pump Chamber Design.....	11
3.3.1	Pump Chamber Breakdown	11
4	Water Supply.....	12
4.1.1	Existing Infrastructure.....	12
5	Summary of Results	14
	Appendix A –Irish Water Confirmation of Feasibility	15
	Appendix B – 1 in 2 Year Design Sheets	16
	Appendix C – 1 in 100 Year Design Sheets	17
	Appendix D – Foul Sewer Design Sheets.....	18
	Appendix E – Storm Water Longitudinal Sections	19
	Appendix F – Foul Sewer Longitudinal Sections.....	20
	Appendix H – Existing Infrastructure & Proposed Upgrades	21
	Appendix J – Proposed Foul Pump Station.....	22
	Appendix K – Qbar Calculations	23

1 Introduction

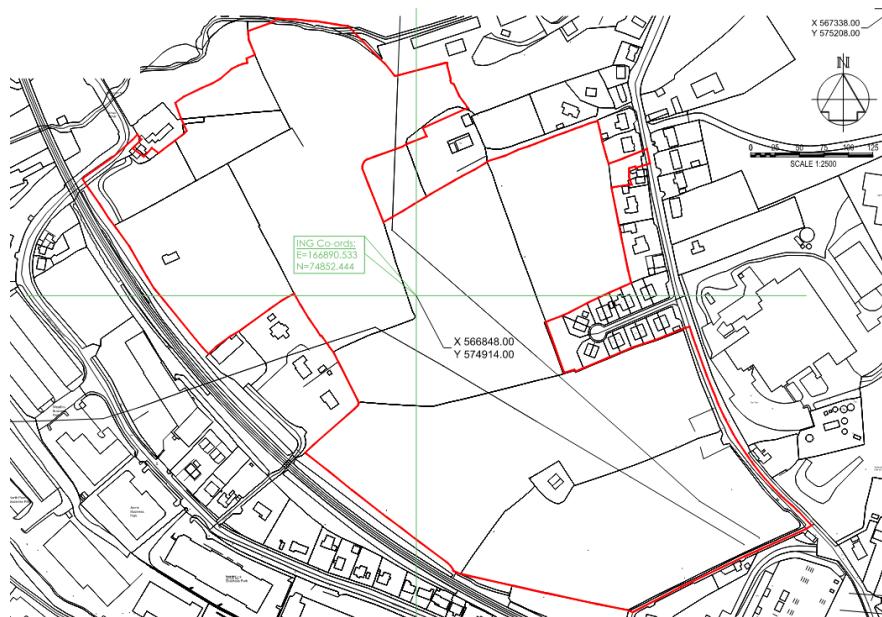
DOSA Consulting Engineers were engaged as Consulting Engineers for the proposed development at Old Whitechurch Road, Kilnap, Cork.

DOSA Consulting Engineers carried out a number of site investigations and their findings have been incorporated to deal with solutions to:

- Surface Water Drainage Network
- Foul Drainage Network
- Water Supply

The proposals for the foul sewer & water infrastructure associated with this development were discussed with Mr. Michael Galvin Senior Design Engineer, Southern Region, Irish Water and Mr. James King, Design Engineer, Southern Region, Irish Water.

1.1 Site Description


The Council is the owner of the site at Kilnap off the Old Whitechurch Road (OWR). It comprises of some 22 hectares (54 acres) of a southerly sloping site zoned residential in the Cork City Development Plan located in the North of the City ("Development Site"). The Development Site is ideally located at the north-western gateway to the City near the proposed North Ring Road. It is located within a reasonable cycling and walking distance of the Blackpool Retail and Business Park while at the same time bounding the Glenamought Valley. The Development Site should create a sustainable residential neighbourhood, which would derive character from its location, topography, amenity, urban design quality and would be a most attractive place to live at the Northern gateway to the City.

Pre-enabling works have been carried out by the Council and the site has been fully serviced from an infrastructural aspect.

The site currently has the following infrastructure in place

- Access
- Foul Connection Infrastructure
- Stormwater Connection Infrastructure
- Water Connection Infrastructure
- Utility Infrastructure

A snapshot of the overall council landholding is outlined in Figure 2.1 below.

Figure 2.1 – Context Map

1.2 Development Description

Phase one of the development is 3.7 ha, with a developable area of 2.74 ha. It is situated approximately 3.5 km north of Cork City Centre, in an area characterised by commercial and residential use. It is located off the N20 and a new road that meanders through the site to connect Old Mallow Road in the north with Old Whitechurch Road in the Southeast.

The proposed development will consist of 1 no. accessible 4 bed detached, 72 no. 3 bed semi-detached, 8 no. 3 bed townhouses, 6 no. 2 bed townhouses, 4 no. 3 bed duplex apartments & 4 no. 1 bed apartments. The form, architecture and scale of the development is consistent with the immediate context and it will enhance the visual amenity of the site as a whole.

1.3 Site Topography

The topography of the site slopes from the southwest in a north and easterly direction as per the contouring below.

Figure 1.3 – Site Topography

2 Surface Water Design Overview

The completed development site is a mix of soft landscaping and hard paving or roofing. The existing topography is a single catchment. Groundwater flow direction is interpreted to be to the north / northeast, providing baseflow to the Glannamought River (which is directly north of the site.)

The runoff from the entire developed site will however discharge to the Glannamought River. . The increased runoff flows will be attenuated to greenfield runoff rates prior to discharging to watercourse.

Discharge from Phase 1 will be into the existing stormwater network and attenuation infrastructure provided by Cork City Council as part of an enabling works package.

The proposed storm water drainage system has been designed to cater for all surface water runoff from all hard surfaces within the proposed development including roadways, roofs, parking areas and green areas etc. The development has been split into a number of catchment areas. The only areas excluded from the catchment areas is the green areas downstream of the development.

The proposed surface water drainage network will collect surface water runoff from the site via a piped network prior to discharging off site via the attenuation tanks, flow control devices and separator arrangement. Final discharge rates will be at Qbar greenfield run-off rates.

Prior to entering the system, the stormwater generated will be treated through a number of nature-based solutions in line with adopted SuDS measures.

The storm sewer network was designed using Innovyze Micro Drainage modelling software. Outputs from the storm sewer design can be found in the Appendices of the Infrastructure Report.

Refer to DOSA Drawings for details of the proposed surface water network.

All flow velocities within the network fall within the limits of 0.75 and 3m/sec as set out in "Recommendations for Site Development Works" as published by the Department of Environment. The storm water network and infiltration basin are designed to accommodate the 100-year return period plus an additional 20% to account for the effects of climate change. Prior to submitting the Services Report we consulted with Cork City Council in relation to the existing drainage services in the area of the proposed development. The existing development contains an existing stormwater network along the spine road and the attenuation for the proposed site has already been accounted for within this network.

2.1 Surface Water Drainage Network

2.1.1 Existing Infrastructure

Pre-enabling works have been carried out by the Council and the site has been fully serviced from an infrastructural aspect.

The site currently has the following infrastructure in place

- Stormwater Connection Infrastructure

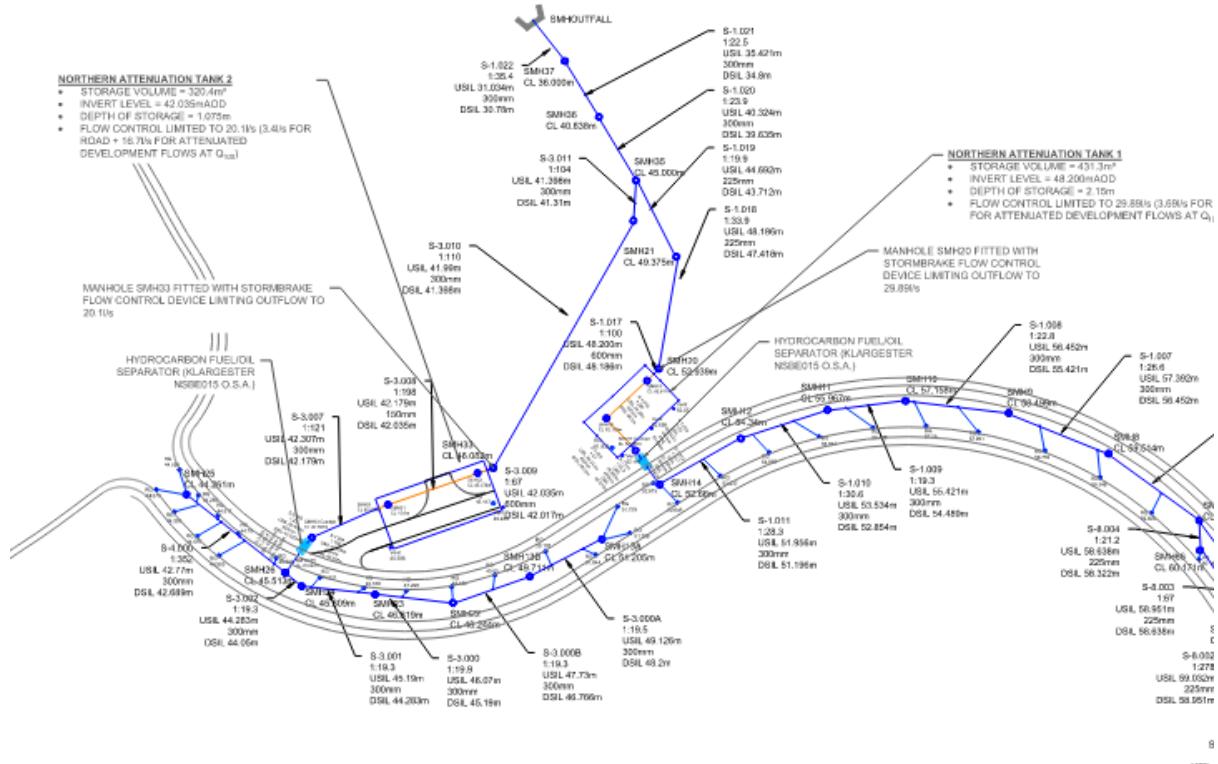
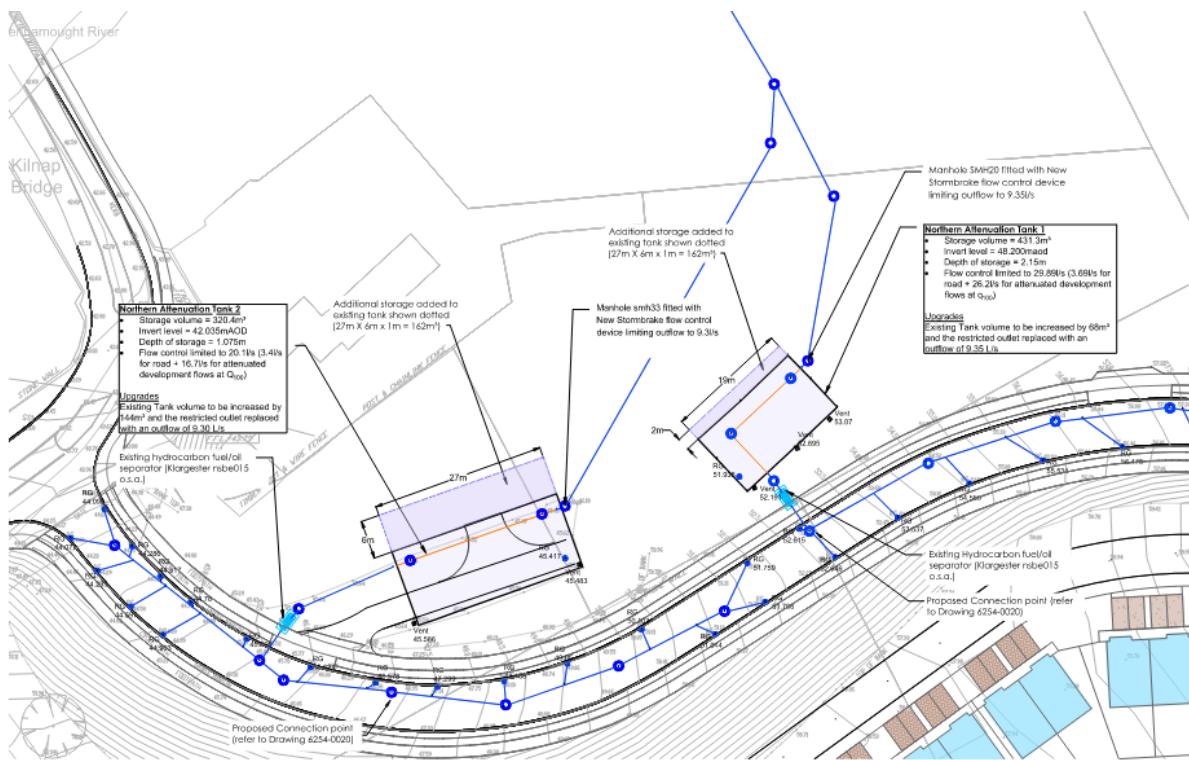



Figure 2.1 - Existing Stormwater Infrastructure

Figure 2.2 - Existing Attenuation Tank Locations

Figure 2.3–Proposed Tank Upgrades

Petrol interceptors have been provided upstream of the attenuation tanks to ensure that any remaining hydro-carbons or pollutants within the runoff from trafficked areas are treated prior to outfall to the existing watercourse. The existing Interceptors are summarised below

Petrol Interceptor Specification		
Catchment 1	Tank No. 1	Klargester NSBE015 O.S.A
Catchment 2	Tank No. 2	Klargester NSBE015 O.S.A

Table 2.0 – Interceptor Details

The attenuation volume provided by Cork City Council as part of the enabling works would appear to be less than that required to cater for a 1 in 100-year return period. The current design indicates a revised Qbar and attenuation volume. As a result, it is proposed to increase the storage volumes of the existing tanks and replace the restricted outlets to cater for the revised design.

	Attenuation Volume Provided (Enabling Works)	Allowance for Road (Enabling Works)	Volume dedicated to Development (Enabling Works)
Tank 1	431.3 m ³	54.3 m ³	377 m ³
Tank 2	320.4 m ³	54.4m ³	266 m ³

Table 2.1 – Summary of Existing Attenuation Tanks

	Volume dedicated to Development (Enabling Works)	Revised Attenuation Required for Proposed Development	Additional Attenuation Required for Proposed Development
Tank 1	377 m ³	445 m ³	68 m ³
Tank 2	266 m ³	410 m ³	144 m ³

Table 2.2 – Summary of Additional Attenuation Volumes

The existing tanks are provided a hydro brake at the outfall of the surface water catchment to restrict the outflow of water from the subject site

		Restricted Outlet Development (Enabling Works)	Restricted Outlet Road (Enabling Works)	Total (Enabling Works)
Catchment 1	Tank 1	26.2 l/s	3.69 l/s	29.89 l/s
Catchment 2	Tank 2	16.7 l/s	3.4 l/s	20.10 l/s

Table 2.3 – Summary of Existing Restricted Outlets

		Restricted Outlet Development (Proposed Works)	Restricted Outlet Road (Enabling Works)	Revised Total
Catchment 1	Tank 1	5.66 l/s	3.69 l/s	9.35 l/s
Catchment 2	Tank 2	5.90 l/s	3.4 l/s	9.30 l/s

Table 2.4 – Summary of revised Restricted Outlets

As-built drawings of the Existing Stormwater Infrastructure and proposed upgrades are attached in Appendix H. The revised Qbar calculations are in Appendix K.

2.1.2 Proposed Stormwater Infrastructure

The surface water drainage network for the proposed development was modelled using the Microdrainage software application. The surface water pipe lengths, slopes, contributing impermeable areas, upstream invert levels, upstream cover levels and pipe diameters were entered into the model using the drawings supplied.

The global variables required for the model were the M5-60 and Rainfall Ratio. These two factors may be read from maps contained in the Wallingford procedure. They enable the program to calculate the intensity, duration and frequency characteristics of storms.

M5-60 is the rainfall depth based on a 60-minute storm of 5 years return period. Ratio R is the ratio of the 60-minute storm to the 2-day storm for the 5-year return period events. These values are as follows:

- M5-60 = 18.80mm
- Ratio R = 0.250

Microdrainage generates design storms using the principles set out in the Flood Studies Report (NERC 1975).

Both a summer and winter rainfall profile was used for the design of the pipework. A summer profile gives higher rainfall intensities and results in higher runoff rates and is used to determine the required capacity of the pipework.

The surface water drainage network was assessed for compliance with maximum and minimum velocities, pipe length etc. The network was designed to ensure velocities in the network and pipe gradients did not exceed the maximum velocity of 4.0m/s. The minimum velocity allowed was 0.75m/s.

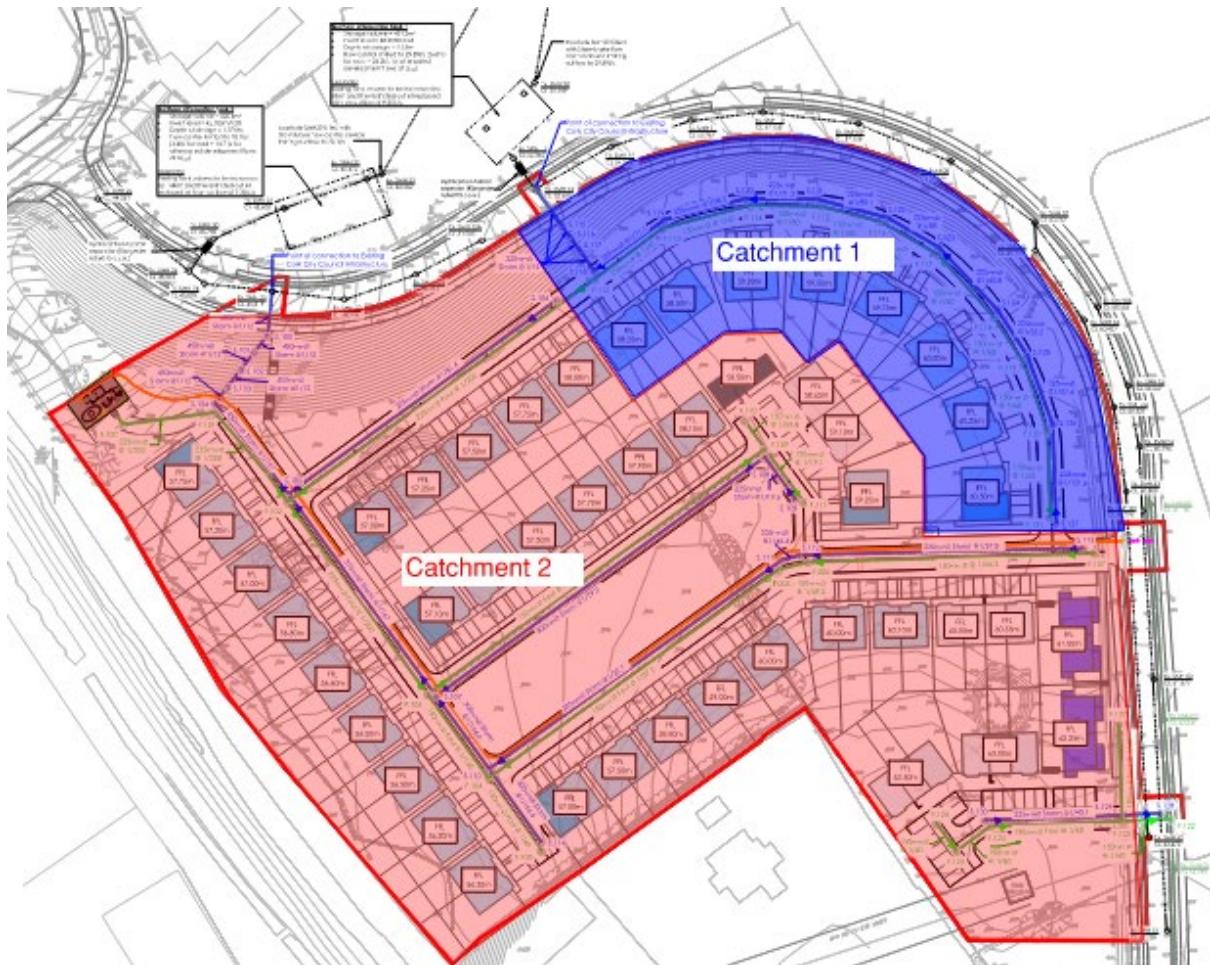
The design of the drainage network was assessed using events with a range of different durations to determine the critical event for each return period analysed as follows:

- 1 in 2-year return period events were used to ensure that the system did not surcharge;
- 1 in 100-year return period events were used to ensure that flooding did not occur.

2.2 Design Criteria:

The proposed surface water drains have been designed in accordance with the Greater Dublin Strategic Drainage Study (GDSDS), the Department of the Environment's Recommendations for Site Development Works for Housing Areas, the Department of the Environment's Building Regulations "Technical Guidance Document Part H Drainage and Waste Water Disposal" and BS EN 752: 2008 Drain and Sewer Systems Outside Buildings.

- Catchment Area 1 1.769 Ha
- Catchment Area 2 1.839 Ha
- Return period for pipe work design 2 years
- Return period for attenuation design 100 years
- Soil Type 2
- Allowable Outflow (Catchment 1) 26.2 l/
- Allowable Outflow (Catchment 2) 16.7 l/
- Time of entry 5 minutes
- M5 – 60 18.80 mm
- Ratio "r" 0.250
- Pipe Friction (Ks) 0.6 mm
- Minimum Velocity (based on pipe flowing full) 1.0 m/s
- Rainfall Runoff from Roads and Footpaths 100%
- Rainfall Runoff from Roofs 80%
- Rainfall Runoff from Driveways 80%
- Rainfall Runoff from Green Areas 20%
- Rainfall Depth Factored for Climate Change (as per GDSDS) 20%


(in accordance with GDSDS Volume 2, Chapter 6, Table 6.2 – see below)

Climate Change Category	Characteristics
River flows	20% increase in flows for all return periods up to 100 years
Sea level	400+mm rise (see Climate Change policy document for sea levels as a function of return period)
Rainfall	10% increase in depth (factor all intensities by 1.1) Modify time series rainfall in accordance with the GDSDS climate change policy document

Table 6.2 Climate Change Factors to be Applied to Drainage Design

2.3 Catchments

The development has been divided into 2 Catchments as indicated in Fig 2.3 Below

Figure 2.3- Catchment Plan

3 Foul Sewer System

3.1.1 Existing Infrastructure

Pre-enabling works have been carried out by the Council and the site has been fully serviced from an infrastructural aspect.

The site currently has the following infrastructure in place

- Foul Connection Infrastructure

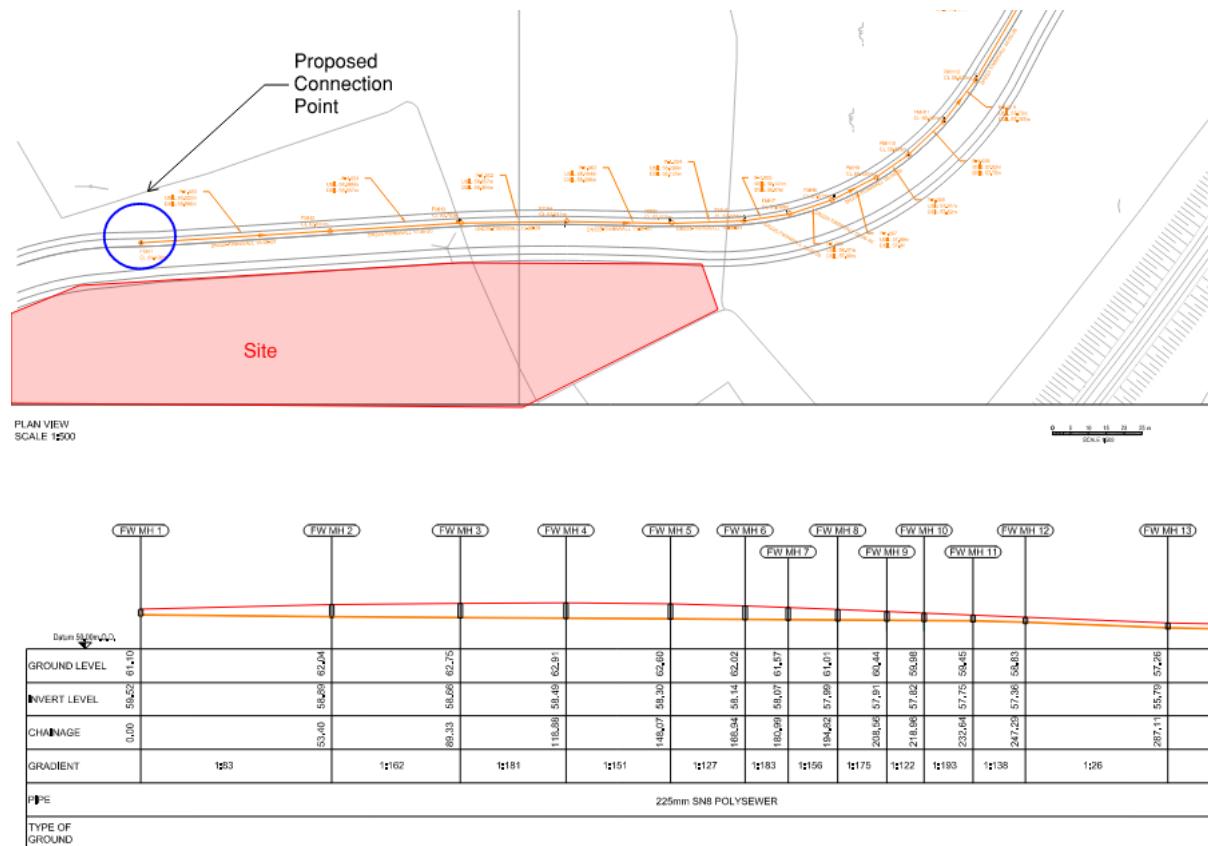


Figure 3.1 - Existing Foul Infrastructure

3.2 Foul Sewer Design

A Pre-Connection Enquiry was submitted to Irish Water. The Irish Water Reference Number for this enquiry is CDS22007050. The response to this Enquiry was issued by Irish Water on 11th November 2022. This confirmed that, subject to a valid connection agreement being put in place, the proposed connection to the Irish Water network could be facilitated. The Confirmation of Feasibility document is included in Appendix A.

The foul sewer has been designed using the System 1 and Simulation Modules of the Micro-drainage package. The foul network design addresses present day design issues and can view velocities at Full Bore, Proportional Depth and 1/3 flow.

A model of the proposed foul drainage network was built using the micro-drainage software applications. The model was analysed and amended until the results met with the design criteria specified.

The network has been designed to achieve self-cleansing velocities at 1/3 flow whilst maintaining minimum gradients.

3.2.1 Development Breakdown

95 No. Residential Units

Section 3.6 of The Irish Water Code of Practice Wastewater Infrastructure states that for the gravity sewers shall be designed to carry a minimum wastewater volume of 6 times the dry weather flow (6DWF) which is to be taken as 446 litres per dwelling

$$\text{Loading} = (95) (446) / (24) (60) (60) = 0.490 \text{ litres/second}$$

$$6\text{DWF} = 2.94 \text{ litres/second}$$

The layout of the proposed foul sewer network is shown on the Proposed Stormwater & Foul Sewer Layout Plan 6254-0020.

The overall quantity of wastewater for the proposed development is estimated at 42.34m³ per day.

The foul waste within the development will be collected via an internal gravity network and will discharge to the existing public foul sewer.

All works will be in accordance with Irish Water specifications and requirements.

All works will be in accordance with Irish Water Code of Practice for Wastewater Supply & the Wastewater Infrastructure Standard Details Document Number: IW-CDS-5030-01.

3.3 Pump Chamber Design

3.3.1 Pump Chamber Breakdown

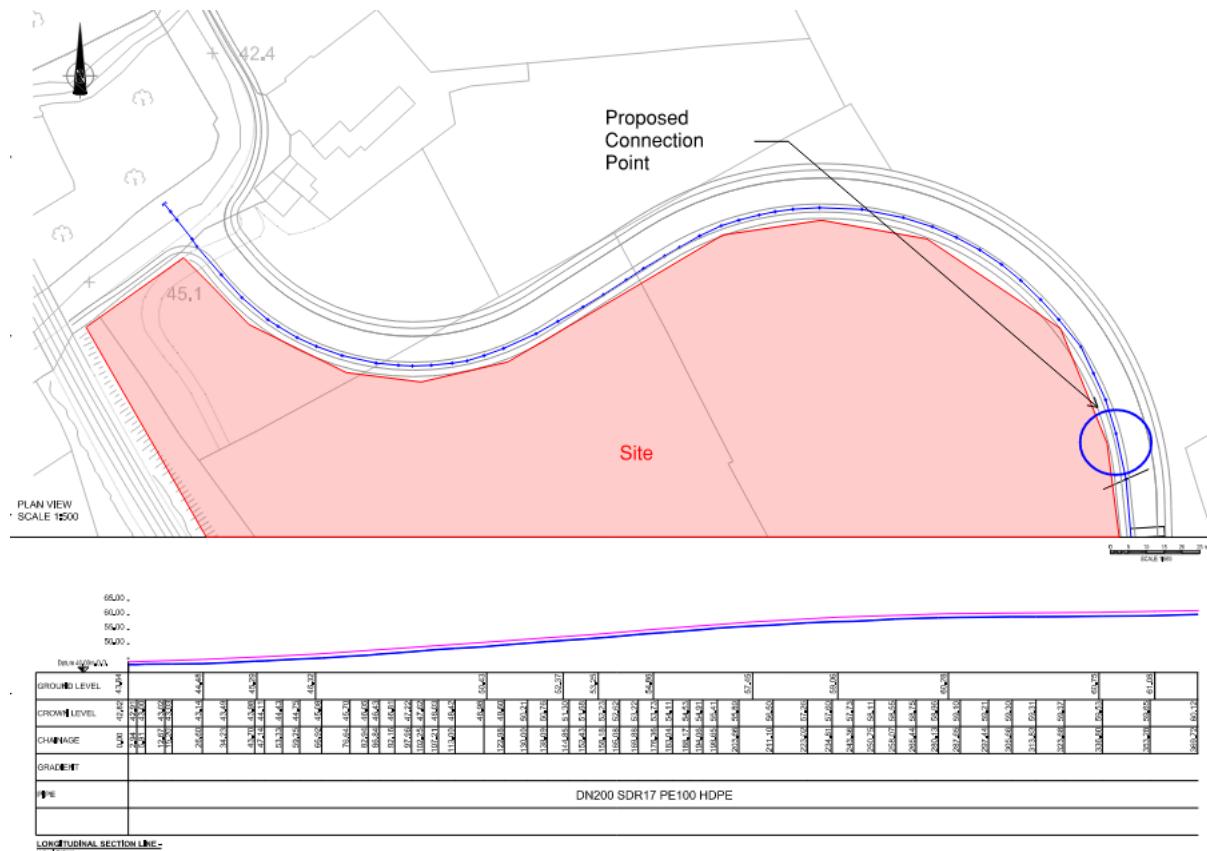
Based on the development breakdown, 86 no. dwelling houses will discharge to the pumping station.

Dry weather flows (DWF) is taken as 446 litres per dwelling as per the Irish Water Code of Practice for Wastewater Infrastructure

Proposed Storage = 24 hours

$$\text{Storage Capacity required} = (446) (86) = 38,356 \text{ litres or } 39.36\text{m}^3$$

It is proposed to provide a pumping chamber with a storage capacity of 40.0m³ and pump the effluent generated via an 100mm diameter HDPE rising main and connect to the gravity sewer on the main road as shown on the Proposed Drainage Layout Drawing 6254-0020.


4 Water Supply

4.1.1 Existing Infrastructure

Pre-enabling works have been carried out by the Council and the site has been fully serviced from an infrastructural aspect.

The site currently has the following infrastructure in place

- Water Connection Infrastructure

Figure 4.1 – Existing Watermain Infrastructure

As with the drainage network, a Pre-Connection Enquiry was submitted to Irish Water under Reference No. CDS22002703. This confirmed that, subject to a valid connection agreement being put in place, the proposed connection to the Irish Water network could be facilitated.

It is proposed to provide a new 100mm I.D. Ø (inside diameter) HDPE connection to the public watermain with associated valves and metering requirements. Internally within the development it is proposed to have a series of 100mm I.D. branches and loops with associated hydrants, valves and metering requirements.

Water distribution supply to each building will be sized to cater for the requirements of those particular uses. Metered connections will be made to the main in accordance with Irish Water specifications and details.

The layout of the proposed watermain network is shown on the Proposed Watermain Layout Plan 6254-0030.

All works will be in accordance with Irish Water Code of Practice for Water Supply & the Water Infrastructure Standard Details Document Number: IW-CDS-5020-01.

Details of the proposed Pump Station have been included in Appendix J

5 Summary of Results

The storm water network was built and analysed using the Microdrainage Software application and were assessed for a 1 in 2 year storm & 1 in 100 year storm. A summary of the results is shown in Tables 5.1 below

The global variables, pipeline and manhole schedules for modelled and these show the basic pipe details such as pipe length, diameter, roughness coefficient, upstream invert, velocity, etc.

Table 5.1 Summary of Surcharge and Flooding

Storm Event	Results
1 in 2 year	No surcharge of the stormwater network
1 in 100 year	Surcharge

The stormwater system is designed to ensure no surcharge occurs during a 1 in 2-year return period event. No flooding was predicted to occur for the 1 in 100-year return period event. Surcharging occurred for a number of critical storm events, but this is allowed and does not compromise or flood the network. The location of the critical storm events for each pipe run within the Micro-drainage Software model is indicated in Appendices B & C. The text specifying Flood Risk in the output data is indicated when the surcharging of the pipe run approaches within 300mm of the MH cover and this does not indicate flooding. The critical storm event for each catchment area is indicated in the output in the Appendices.

In relation to Attenuation it is proposed to increase the volume of the existing tanks

	Volume dedicated to Development (Enabling Works)	Revised Attenuation Required for Proposed Development	Additional Attenuation Required for Proposed Development
Tank 1	377 m ³	445 m ³	68 m ³
Tank 2	266 m ³	410 m ³	144 m ³

Table 5.1 – Summary of Additional Attenuation Volumes

In relation to the restricted outlets it is proposed to replace the existing

		Restricted Outlet Development (Proposed Works)	Restricted Outlet Road (Enabling Works)	Total (Proposed Works)
Catchment 1	Tank 1	5.66 l/s	3.69 l/s	9.35 l/s
Catchment 2	Tank 2	5.90 l/s	3.4 l/s	9.30 l/s

Table 5.2 – Summary of Revised Restricted Outlets

The foul water network model was built and analysed using the Micro-drainage Software application and was assessed to ensure velocities maintained a self-cleansing velocity.

The foul water network model was built and analysed using the Micro-drainage Software application and was assessed to ensure velocities maintained a self-cleansing velocity. The system

will consist of an internal gravity network discharging to the existing Irish Water asset via a pumping station.

Appendix A –Irish Water Confirmation of Feasibility

CONFIRMATION OF FEASIBILITY

Stephen O'Grady
DOSA, Joyce House
Barrack Square
Ballincollig
Co. Cork
P31 KP84

Uisce Éireann
Bosca OP448
Oifig Sheachadta na
Cathrach Theas
Cathair Chorcaí

Irish Water
PO Box 448,
South City
Delivery Office
Cork City.

www.water.ie

11 November 2022

**Our Ref: CDS22007050 Pre-Connection Enquiry
Kilnap, Old Whitechurch Road, Cork**

Dear Stephen,

We have completed the review of the Pre-Connection Enquiry.

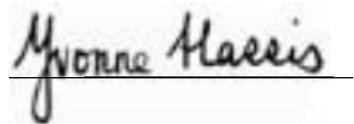
Irish Water has reviewed the pre-connection enquiry in relation to a Water & Wastewater connection for a Housing Development of 472 unit(s) at Kilnap, Old Whitechurch Road, Cork, (the **Development**).

Based upon the details provided we can advise the following regarding connecting to the networks;

- **Water Connection** - Feasible without infrastructure upgrade by Irish Water
- **Wastewater Connection** - Feasible without infrastructure upgrade by Irish Water

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before the Development can be connected to our network(s) you must submit a connection application and be granted and sign a connection agreement with Irish Water.

As the network capacity changes constantly, this review is only valid at the time of its completion. As soon as planning permission has been granted for the Development, a completed connection application should be submitted. The connection application is available at www.water.ie/connections/get-connected/


Where can you find more information?

- **Section A** - What is important to know?

This letter is issued to provide information about the current feasibility of the proposed connection(s) to Irish Water's network(s). This is not a connection offer and capacity in Irish Water's network(s) may only be secured by entering into a connection agreement with Irish Water.

For any further information, visit www.water.ie/connections, email newconnections@water.ie or contact 1800 278 278.

Yours sincerely,

A handwritten signature in black ink, appearing to read "Yvonne Harris".

Yvonne Harris
Head of Customer Operations

Section A - What is important to know?

What is important to know?	Why is this important?
Do you need a contract to connect?	<ul style="list-style-type: none"> Yes, a contract is required to connect. This letter does not constitute a contract or an offer in whole or in part to provide a connection to Irish Water's network(s). Before the Development can connect to Irish Water's network(s), you must submit a connection application <u>and be granted and sign</u> a connection agreement with Irish Water.
When should I submit a Connection Application?	<ul style="list-style-type: none"> A connection application should only be submitted after planning permission has been granted.
Where can I find information on connection charges?	<ul style="list-style-type: none"> Irish Water connection charges can be found at: https://www.water.ie/connections/information/charges/
Who will carry out the connection work?	<ul style="list-style-type: none"> All works to Irish Water's network(s), including works in the public space, must be carried out by Irish Water*. <p>*Where a Developer has been granted specific permission and has been issued a connection offer for Self-Lay in the Public Road/Area, they may complete the relevant connection works</p>
Fire flow Requirements	<ul style="list-style-type: none"> The Confirmation of Feasibility does not extend to fire flow requirements for the Development. Fire flow requirements are a matter for the Developer to determine. What to do? - Contact the relevant Local Fire Authority
Plan for disposal of storm water	<ul style="list-style-type: none"> The Confirmation of Feasibility does not extend to the management or disposal of storm water or ground waters. What to do? - Contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges.
Where do I find details of Irish Water's network(s)?	<ul style="list-style-type: none"> Requests for maps showing Irish Water's network(s) can be submitted to: datarequests@water.ie

What are the design requirements for the connection(s)?	<ul style="list-style-type: none"> The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this Development shall comply with <i>the Irish Water Connections and Developer Services Standard Details and Codes of Practice</i>, available at www.water.ie/connections
Trade Effluent Licensing	<ul style="list-style-type: none"> Any person discharging trade effluent** to a sewer, must have a Trade Effluent Licence issued pursuant to section 16 of the Local Government (Water Pollution) Act, 1977 (as amended). More information and an application form for a Trade Effluent License can be found at the following link: https://www.water.ie/business/trade-effluent/about/ <p>**trade effluent is defined in the Local Government (Water Pollution) Act, 1977 (as amended)</p>

Appendix B – 1 in 2 Year Design Sheets

Denis O'Sullivan & Associates		Page 1
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area No. 1 Kinap, Old Whitechurch Rd Cork	
Date 24/06/2024 File SW Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years)	100	Add Flow / Climate Change (%)	10
M5-60 (mm)	18.800	Minimum Backdrop Height (m)	0.200
Ratio R	0.250	Maximum Backdrop Height (m)	1.500
Maximum Rainfall (mm/hr)	50	Min Design Depth for Optimisation (m)	1.200
Foul Sewage (l/s/ha)	0.00	Min Vel for Auto Design only (m/s)	1.00
Volumetric Runoff Coeff.	0.750	Min Slope for Optimisation (1:X)	500

Designed with Level Inverts

Time Area Diagram for Storm

Time (mins)	Area (ha)	Time (mins)	Area (ha)
0-4	0.628	4-8	0.583

Total Area Contributing (ha) = 1.211

Total Pipe Volume (m³) = 36.215

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	T.E. (mins)	DWF (l/s)	k (mm)	HYD SECT	DIA (mm)
S1.000	69.410	1.200	57.8	0.185	5.00	0.0	0.600	o	225
S1.001	4.640	0.100	46.4	0.001	0.00	0.0	0.600	o	225
S1.002	71.950	3.250	22.1	0.195	0.00	0.0	0.600	o	225
S2.000	22.045	0.132	167.0	0.045	5.00	0.0	0.600	o	300

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ Area (ha)	Σ DWF (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (l/s)	Flow (l/s)
S1.000	50.00	5.67	59.350	0.185	0.0	0.0	2.5	1.72	68.5	27.6
S1.001	50.00	5.71	58.150	0.186	0.0	0.0	2.5	1.93	76.6	27.7
S1.002	50.00	6.14	58.050	0.381	0.0	0.0	5.2	2.79	111.1	56.8
S2.000	50.00	5.30	54.500	0.045	0.0	0.0	0.6	1.21	85.8	6.7

Denis O'Sullivan & Associates		Page 2
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area No. 1 Kinap, Old Whitechurch Rd Cork	
Date 24/06/2024 File SW Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	T.E. (mins)	DWF (l/s)	k (mm)	HYD SECT	DIA (mm)
S1.003	21.990	0.132	166.6	0.074	0.00	0.0	0.600	o	300
S3.000	12.725	0.650	19.6	0.067	5.00	0.0	0.600	o	225
S3.001	99.900	1.250	79.9	0.273	0.00	0.0	0.600	o	300
S1.004	61.515	0.368	167.0	0.156	0.00	0.0	0.600	o	375
S4.000	81.440	1.000	81.4	0.162	5.00	0.0	0.600	o	225
S1.005	28.850	0.173	167.0	0.053	0.00	0.0	0.600	o	450
S1.006	5.085	0.424	12.0	0.000	0.00	0.0	0.600	o	450
S1.007	5.495	0.458	12.0	0.000	0.00	0.0	0.600	o	450
S1.008	5.265	0.439	12.0	0.000	0.00	0.0	0.600	o	450
S1.009	5.245	0.437	12.0	0.000	0.00	0.0	0.600	o	450
S1.010	11.035	0.920	12.0	0.000	0.00	0.0	0.600	o	450

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ Area (ha)	Σ DWF (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (l/s)	Flow (l/s)
S1.003	50.00	6.44	54.368	0.500	0.0	0.0	6.8	1.22	85.9	74.5
S3.000	50.00	5.07	57.300	0.067	0.0	0.0	0.9	2.97	118.1	10.0
S3.001	50.00	6.02	56.650	0.340	0.0	0.0	4.6	1.76	124.4	50.6
S1.004	50.00	7.18	54.236	0.996	0.0	0.0	13.5	1.40	154.5	148.4
S4.000	50.00	5.94	56.500	0.162	0.0	0.0	2.2	1.45	57.7	24.1
S1.005	50.00	7.48	53.868	1.211	0.0	0.0	16.4	1.57	249.8	180.4
S1.006	50.00	7.50	53.324	1.211	0.0	0.0	16.4	5.90	937.6	180.4
S1.007	50.00	7.51	51.108	1.211	0.0	0.0	16.4	5.89	937.4	180.4
S1.008	50.00	7.53	49.089	1.211	0.0	0.0	16.4	5.90	937.6	180.4
S1.009	50.00	7.54	47.087	1.211	0.0	0.0	16.4	5.89	937.3	180.4
S1.010	50.00	7.57	46.650	1.211	0.0	0.0	16.4	5.89	937.6	180.4

Denis O'Sullivan & Associates		Page 3
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area No. 1 Kinap, Old Whitechurch Rd Cork	
Date 24/06/2024 File SW Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Diam., L*W (mm)	Pipe Out			PN	Pipes In			Backdrop (mm)
				PN	Invert Level (m)	Diameter (mm)		PN	Invert Level (m)	Diameter (mm)	
SS.113	60.850	1.500	1050	S1.000	59.350	225					
SS.112	59.650	1.500	1050	S1.001	58.150	225	S1.000	58.150	225		
SS.111	59.550	1.500	1050	S1.002	58.050	225	S1.001	58.050	225		
SS.114	56.000	1.500	1050	S2.000	54.500	300					
SS.110	56.300	1.932	1200	S1.003	54.368	300	S1.002	54.800	225		357
							S2.000	54.368	300		
SS.109	58.800	1.500	1050	S3.000	57.300	225					
SS.108	58.150	1.500	1050	S3.001	56.650	300	S3.000	56.650	225		
SS.107	57.000	2.764	1350	S1.004	54.236	375	S1.003	54.236	300		1089
							S3.001	55.400	300		
SS.106	58.000	1.500	1050	S4.000	56.500	225	S1.004	53.868	375		
SS.105	57.000	3.132	1350	S1.005	53.868	450	S4.000	55.500	225		1407
							S1.005	53.695	450		
SS.104	56.500	3.176	1350	S1.006	53.324	450	S1.006	52.900	450		371
SS.103	54.250	3.142	1350	S1.007	51.108	450	S1.007	50.650	450		1792
SS.102	52.000	2.911	1350	S1.008	49.089	450	S1.008	48.650	450		1561
SS.102	50.000	2.913	1350	S1.009	47.087	450	S1.009	46.650	450		1563
SS.101	48.000	1.350	1350	S1.010	46.650	450	S1.010	45.730	450		
SEX.SMH23	46.819	1.089	0		OUTFALL						

Denis O'Sullivan & Associates		Page 4
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area No. 1 Kinap, Old Whitechurch Rd Cork	
Date 24/06/2024 File SW Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage Network W.12.4		

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH DIAM., L*W (mm)
S1.000	o	225	SS.113	60.850	59.350	1.275	1050
S1.001	o	225	SS.112	59.650	58.150	1.275	1050
S1.002	o	225	SS.111	59.550	58.050	1.275	1050
S2.000	o	300	SS.114	56.000	54.500	1.200	1050
S1.003	o	300	SS.110	56.300	54.368	1.632	1200
S3.000	o	225	SS.109	58.800	57.300	1.275	1050
S3.001	o	300	SS.108	58.150	56.650	1.200	1050
S1.004	o	375	SS.107	57.000	54.236	2.389	1350
S4.000	o	225	SS.106	58.000	56.500	1.275	1050
S1.005	o	450	SS.105	57.000	53.868	2.682	1350
S1.006	o	450	SS.104	56.500	53.324	2.726	1350
S1.007	o	450	SS.103	54.250	51.108	2.692	1350
S1.008	o	450	SS.102	52.000	49.089	2.461	1350

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH DIAM., L*W (mm)
S1.000	69.410	57.8	SS.112	59.650	58.150	1.275	1050
S1.001	4.640	46.4	SS.111	59.550	58.050	1.275	1050
S1.002	71.950	22.1	SS.110	56.300	54.800	1.275	1200
S2.000	22.045	167.0	SS.110	56.300	54.368	1.632	1200
S1.003	21.990	166.6	SS.107	57.000	54.236	2.464	1350
S3.000	12.725	19.6	SS.108	58.150	56.650	1.275	1050
S3.001	99.900	79.9	SS.107	57.000	55.400	1.300	1350
S1.004	61.515	167.0	SS.105	57.000	53.868	2.757	1350
S4.000	81.440	81.4	SS.105	57.000	55.500	1.275	1350
S1.005	28.850	167.0	SS.104	56.500	53.695	2.355	1350
S1.006	5.085	12.0	SS.103	54.250	52.900	0.900	1350
S1.007	5.495	12.0	SS.102	52.000	50.650	0.900	1350
S1.008	5.265	12.0	SS.102	50.000	48.650	0.900	1350

Denis O'Sullivan & Associates		Page 5
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area No. 1 Kinap, Old Whitechurch Rd Cork	
Date 24/06/2024 File SW Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	(mm)
S1.009	o	450	SS.102	50.000	47.087	2.463	1350
S1.010	o	450	SS.101	48.000	46.650	0.900	1350

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	(mm)
S1.009	5.245	12.0	SS.101	48.000	46.650	0.900	1350
S1.010	11.035	12.0	SEx.SMH23	46.819	45.730	0.639	0

Free Flowing Outfall Details for Storm

Outfall Pipe Number	Outfall Name	C. Level (m)	I. Level (m)	Min I. Level (m)	D,L (mm)	W (mm)
S1.010	SEx.SMH23	46.819	45.730	45.319	0	0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Foul Sewage per hectare (l/s)	0.000
PIMP (% impervious)	100	Additional Flow - % of Total Flow	10.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage	2.000
Hot Start (mins)	0	Inlet Coeffiecient	0.800
Hot Start Level (mm)	0	Run Time (mins)	60
Manhole Headloss Coeff (Global)	0.500	Output Interval (mins)	1
Number of Input Hydrographs	0	Number of Storage Structures	0
Number of Online Controls	0	Number of Time/Area Diagrams	0
Number of Offline Controls	0		

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type	Summer
Return Period (years)	100	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	18.800	Storm Duration (mins)	30
Ratio R	0.250		

Denis O'Sullivan & Associates		Page 6
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area No. 1 Kinap, Old Whitechurch Rd Cork	
Date 24/06/2024 File SW Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF
Analysis Timestep Fine Inertia Status OFF
DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 2
Climate Change (%) 0

PN	Storm	Return Period	Climate Change	First X Surcharge	First Y Flood	First Z Overflow	O/F Act.	Lvl Exc.
S1.000	15 Winter	2	0%					
S1.001	15 Winter	2	0%					
S1.002	15 Winter	2	0%					
S2.000	15 Winter	2	0%					
S1.003	15 Winter	2	0%					
S3.000	15 Winter	2	0%					
S3.001	15 Winter	2	0%					
S1.004	15 Winter	2	0%					
S4.000	15 Winter	2	0%					
S1.005	15 Winter	2	0%					
S1.006	15 Winter	2	0%					
S1.007	15 Winter	2	0%					
S1.008	15 Winter	2	0%					
S1.009	15 Winter	2	0%					
S1.010	15 Winter	2	0%					

PN	US/MH Name	Water		Flooded			Pipe		
		Level (m)	Surch'ed Depth (m)	Volume (m³)	Flow / Cap.	O'flow (l/s)	Flow (l/s)	Status	
S1.000	SS.113	59.458	-0.117	0.000	0.45	0.0	29.8	OK	
S1.001	SS.112	58.286	-0.089	0.000	0.67	0.0	30.1	OK	
S1.002	SS.111	58.166	-0.109	0.000	0.53	0.0	56.7	OK	
S2.000	SS.114	54.656	-0.144	0.000	0.09	0.0	6.5	OK	
S1.003	SS.110	54.649	-0.019	0.000	0.95	0.0	71.7	OK	
S3.000	SS.109	57.349	-0.176	0.000	0.11	0.0	11.1	OK	
S3.001	SS.108	56.784	-0.166	0.000	0.41	0.0	49.6	OK	
S1.004	SS.107	54.530	-0.081	0.000	0.94	0.0	136.7	OK	
S4.000	SS.106	56.610	-0.115	0.000	0.48	0.0	26.9	OK	
S1.005	SS.105	54.171	-0.146	0.000	0.79	0.0	167.9	OK	
S1.006	SS.104	53.538	-0.236	0.000	0.46	0.0	168.2	OK	
S1.007	SS.103	51.316	-0.242	0.000	0.44	0.0	168.1	OK	
S1.008	SS.102	49.300	-0.239	0.000	0.45	0.0	167.7	OK	
S1.009	SS.102	47.299	-0.238	0.000	0.45	0.0	166.9	OK	
S1.010	SS.101	46.822	-0.278	0.000	0.31	0.0	167.0	OK	

Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 2 Kinap, Old Whitechurch Rd Cork
---	---

Date 23/07/2024 File SW Model - Catchm...	Designed By S.O.'Grady Checked By
--	--------------------------------------

Micro Drainage	Network W.12.4
----------------	----------------

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years)	100	Add Flow / Climate Change (%)	10
M5-60 (mm)	18.800	Minimum Backdrop Height (m)	0.200
Ratio R	0.250	Maximum Backdrop Height (m)	1.500
Maximum Rainfall (mm/hr)	50	Min Design Depth for Optimisation (m)	1.200
Foul Sewage (l/s/ha)	0.00	Min Vel for Auto Design only (m/s)	1.00
Volumetric Runoff Coeff.	0.750	Min Slope for Optimisation (1:X)	500

Designed with Level Inverts

Time Area Diagram for Storm

Time (mins)	Area (ha)	Time (mins)	Area (ha)
0-4	0.239	4-8	0.095

Total Area Contributing (ha) = 0.334

Total Pipe Volume (m³) = 7.695

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	T.E. (mins)	DWF (1/s)	k (mm)	HYD SECT	DIA (mm)
S1.000	24.315	0.200	121.6	0.045	5.00	0.0	0.600	o	225
S1.001	18.005	0.350	51.4	0.039	0.00	0.0	0.600	o	225
S1.002	13.295	0.250	53.2	0.040	0.00	0.0	0.600	o	225
S1.003	21.275	0.350	60.8	0.018	0.00	0.0	0.600	o	225
S1.004	14.490	0.250	58.0	0.036	0.00	0.0	0.600	o	225
S1.005	17.815	0.200	89.1	0.037	0.00	0.0	0.600	o	225

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ Area (ha)	Σ DWF (1/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S1.000	50.00	5.34	59.150	0.045	0.0	0.0	0.6	1.18	47.1	6.7
S1.001	50.00	5.51	58.950	0.084	0.0	0.0	1.1	1.83	72.7	12.5
S1.002	50.00	5.63	58.600	0.124	0.0	0.0	1.7	1.80	71.5	18.5
S1.003	50.00	5.84	58.350	0.142	0.0	0.0	1.9	1.68	66.8	21.2
S1.004	50.00	5.98	58.000	0.178	0.0	0.0	2.4	1.72	68.4	26.5
S1.005	50.00	6.20	57.750	0.215	0.0	0.0	2.9	1.39	55.1	32.0

Denis O'Sullivan & Associates		Page 2
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 2 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024 File SW Model - Catchm...	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	T.E. (mins)	DWF (l/s)	k (mm)	HYD SECT	DIA (mm)
S1.006	17.830	0.250	71.3	0.030	0.00	0.0	0.600	o	225
S1.007	20.485	0.350	58.5	0.034	0.00	0.0	0.600	o	225
S1.008	21.330	0.300	71.1	0.055	0.00	0.0	0.600	o	225
S1.009	5.895	0.491	12.0	0.000	0.00	0.0	0.600	o	225
S1.010	4.335	0.361	12.0	0.000	0.00	0.0	0.600	o	225
S1.011	3.265	0.272	12.0	0.000	0.00	0.0	0.600	o	225
S1.012	11.205	0.915	12.2	0.000	0.00	0.0	0.600	o	225

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ Area (ha)	Σ DWF (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (l/s)	Flow (l/s)
S1.006	50.00	6.39	57.550	0.245	0.0	0.0	3.3	1.55	61.6	36.5
S1.007	50.00	6.59	57.300	0.279	0.0	0.0	3.8	1.71	68.1	41.6
S1.008	50.00	6.81	56.950	0.334	0.0	0.0	4.5	1.55	61.7	49.8
S1.009	50.00	6.84	56.366	0.334	0.0	0.0	4.5	3.80	151.0	49.8
S1.010	50.00	6.86	54.236	0.334	0.0	0.0	4.5	3.80	151.0	49.8
S1.011	50.00	6.87	52.347	0.334	0.0	0.0	4.5	3.80	151.0	49.8
S1.012	50.00	6.92	52.075	0.334	0.0	0.0	4.5	3.76	149.5	49.8

Denis O'Sullivan & Associates		Page 3
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 2 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024	Designed By S.O.'Grady	
File SW Model - Catchm...	Checked By	
Micro Drainage		Network W.12.4

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Diam., L*W (mm)	Pipe Out			PN	Pipes In			Backdrop (mm)
				PN	Invert Level (m)	Diameter (mm)		PN	Invert Level (m)	Diameter (mm)	
SS.127	60.650	1.500	1050	S1.000	59.150	225					
SS.126	60.450	1.500	1050	S1.001	58.950	225	S1.000	58.950	225		
SS.125	60.100	1.500	1050	S1.002	58.600	225	S1.001	58.600	225		
SS.124	59.850	1.500	1050	S1.003	58.350	225	S1.002	58.350	225		
SS.123	59.500	1.500	1050	S1.004	58.000	225	S1.003	58.000	225		
SS.122	59.250	1.500	1050	S1.005	57.750	225	S1.004	57.750	225		
SS.121	59.050	1.500	1050	S1.006	57.550	225	S1.005	57.550	225		
SS.120	58.800	1.500	1050	S1.007	57.300	225	S1.006	57.300	225		
SS.119	58.450	1.500	1050	S1.008	56.950	225	S1.007	56.950	225		
SS.118	58.150	1.784	1200	S1.009	56.366	225	S1.008	56.650	225	284	
SS.117	57.000	2.764	1200	S1.010	54.236	225	S1.009	55.875	225	1639	
SS.116	55.000	2.653	1200	S1.011	52.347	225	S1.010	53.875	225	1528	
SS.115	53.500	1.425	1050	S1.012	52.075	225	S1.011	52.075	225		
SEX.SMH17	52.660	1.500	0		OUTFALL		S1.012	51.160	225		

Denis O'Sullivan & Associates		Page 4
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 2 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024	Designed By S.O.'Grady	
File SW Model - Catchm...	Checked By	
Micro Drainage	Network W.12.4	

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH DIAM., (mm)	L*W
S1.000	o	225	SS.127	60.650	59.150	1.275	1050	
S1.001	o	225	SS.126	60.450	58.950	1.275	1050	
S1.002	o	225	SS.125	60.100	58.600	1.275	1050	
S1.003	o	225	SS.124	59.850	58.350	1.275	1050	
S1.004	o	225	SS.123	59.500	58.000	1.275	1050	
S1.005	o	225	SS.122	59.250	57.750	1.275	1050	
S1.006	o	225	SS.121	59.050	57.550	1.275	1050	
S1.007	o	225	SS.120	58.800	57.300	1.275	1050	
S1.008	o	225	SS.119	58.450	56.950	1.275	1050	
S1.009	o	225	SS.118	58.150	56.366	1.559	1200	
S1.010	o	225	SS.117	57.000	54.236	2.539	1200	
S1.011	o	225	SS.116	55.000	52.347	2.428	1200	
S1.012	o	225	SS.115	53.500	52.075	1.200	1050	

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH DIAM., (mm)	L*W
S1.000	24.315	121.6	SS.126	60.450	58.950	1.275	1050	
S1.001	18.005	51.4	SS.125	60.100	58.600	1.275	1050	
S1.002	13.295	53.2	SS.124	59.850	58.350	1.275	1050	
S1.003	21.275	60.8	SS.123	59.500	58.000	1.275	1050	
S1.004	14.490	58.0	SS.122	59.250	57.750	1.275	1050	
S1.005	17.815	89.1	SS.121	59.050	57.550	1.275	1050	
S1.006	17.830	71.3	SS.120	58.800	57.300	1.275	1050	
S1.007	20.485	58.5	SS.119	58.450	56.950	1.275	1050	
S1.008	21.330	71.1	SS.118	58.150	56.650	1.275	1200	
S1.009	5.895	12.0	SS.117	57.000	55.875	0.900	1200	
S1.010	4.335	12.0	SS.116	55.000	53.875	0.900	1200	
S1.011	3.265	12.0	SS.115	53.500	52.075	1.200	1050	
S1.012	11.205	12.2	SEx.SMH17	52.660	51.160	1.275	0	

Free Flowing Outfall Details for Storm

Outfall Pipe Number	Outfall Name	C. Level (m)	I. Level (m)	Min I. Level (m)	D.L (mm)	W (mm)
S1.012	SEx.SMH17	52.660	51.160	51.160	0	0

Denis O'Sullivan & Associates		Page 5
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 2 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024	Designed By S.O.'Grady	
File SW Model - Catchm...	Checked By	
Micro Drainage	Network W.12.4	

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Foul Sewage per hectare (l/s)	0.000
PIMP (% impervious)	100	Additional Flow - % of Total Flow	10.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage	2.000
Hot Start (mins)	0	Inlet Coeffiecient	0.800
Hot Start Level (mm)	0	Run Time (mins)	60
Manhole Headloss Coeff (Global)	0.500	Output Interval (mins)	1
Number of Input Hydrographs	0	Number of Storage Structures	0
Number of Online Controls	0	Number of Time/Area Diagrams	0
Number of Offline Controls	0		

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type	Summer
Return Period (years)	100	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	18.800	Storm Duration (mins)	30
Ratio R	0.250		

Denis O'Sullivan & Associates		Page 6
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 2 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024	Designed By S.O.'Grady	
File SW Model - Catchm...	Checked By	
Micro Drainage	Network W.12.4	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF
 Analysis Timestep Fine Inertia Status OFF
 DTS Status ON

Profile(s) Summer and Winter
 Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
 Return Period(s) (years) 2
 Climate Change (%) 0

PN	Storm	Return Period	Climate Change	First X Surcharge	First Y Flood	First Z Overflow	O/F Act.	Lvl Exc.
S1.000	15 Winter	2	0%					
S1.001	15 Winter	2	0%					
S1.002	15 Winter	2	0%					
S1.003	15 Winter	2	0%					
S1.004	15 Winter	2	0%					
S1.005	15 Winter	2	0%					
S1.006	15 Winter	2	0%					
S1.007	15 Winter	2	0%					
S1.008	15 Winter	2	0%					
S1.009	15 Winter	2	0%					
S1.010	15 Winter	2	0%					
S1.011	15 Winter	2	0%					
S1.012	15 Winter	2	0%					

PN	US/MH Name	Water		Flooded			Pipe	
		Level (m)	Surch'ed Depth (m)	Volume (m³)	Flow / Cap.	O'flow (l/s)	Flow (l/s)	Status
S1.000	SS.127	59.213	-0.162	0.000	0.17	0.0	7.3	OK
S1.001	SS.126	59.018	-0.157	0.000	0.20	0.0	12.8	OK
S1.002	SS.125	58.684	-0.141	0.000	0.30	0.0	18.4	OK
S1.003	SS.124	58.441	-0.134	0.000	0.34	0.0	21.0	OK
S1.004	SS.123	58.104	-0.121	0.000	0.43	0.0	26.0	OK
S1.005	SS.122	57.880	-0.095	0.000	0.63	0.0	31.0	OK
S1.006	SS.121	57.681	-0.094	0.000	0.63	0.0	35.0	OK
S1.007	SS.120	57.432	-0.093	0.000	0.64	0.0	39.3	OK
S1.008	SS.119	57.109	-0.066	0.000	0.83	0.0	46.7	OK
S1.009	SS.118	56.476	-0.115	0.000	0.47	0.0	46.9	OK
S1.010	SS.117	54.356	-0.105	0.000	0.55	0.0	47.0	OK
S1.011	SS.116	52.478	-0.094	0.000	0.64	0.0	46.9	OK
S1.012	SS.115	52.170	-0.130	0.000	0.37	0.0	46.8	OK

Denis O'Sullivan & Associates		Page 1
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 3 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024 File SW Model - Catchm...	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years)	100	Add Flow / Climate Change (%)	10
M5-60 (mm)	18.800	Minimum Backdrop Height (m)	0.200
Ratio R	0.250	Maximum Backdrop Height (m)	1.500
Maximum Rainfall (mm/hr)	50	Min Design Depth for Optimisation (m)	1.200
Foul Sewage (l/s/ha)	0.00	Min Vel for Auto Design only (m/s)	1.00
Volumetric Runoff Coeff.	0.750	Min Slope for Optimisation (1:X)	500

Designed with Level Inverts

Time Area Diagram for Storm

Time (mins)	Area (ha)	Time (mins)	Area (ha)
0-4	0.140	4-8	0.044

Total Area Contributing (ha) = 0.184

Total Pipe Volume (m³) = 1.700

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	T.E. (mins)	DWF (l/s)	k (mm)	HYD SECT	DIA (mm)
S1.000	30.200	0.700	43.1	0.145	5.00	0.0	0.600	o	225
S1.001	12.550	0.075	167.3	0.039	0.00	0.0	0.600	o	225

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ Area (ha)	Σ DWF (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (l/s)	Flow (l/s)
S1.000	50.00	5.25	61.500	0.145	0.0	0.0	2.0	2.00	79.4	21.6
S1.001	50.00	5.46	60.800	0.184	0.0	0.0	2.5	1.01	40.1	27.4

Denis O'Sullivan & Associates		Page 2
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 3 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024 File SW Model - Catchm...	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Diam., L*W (mm)	Pipe Out			PN	Pipes In			Backdrop (mm)
				PN	Invert Level (m)	Diameter (mm)		PN	Invert Level (m)	Diameter (mm)	
SS 130	63.000	1.500	1050	S1.000	61.500	225					
SS 129	62.300	1.500	1050	S1.001	60.800	225	S1.000		60.800	225	
SS 128	62.470	1.745	0		OUTFALL		S1.001		60.725	225	

Denis O'Sullivan & Associates		Page 3
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 3 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024 File SW Model - Catchm...	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	
Micro Drainage		

Pipeline Schedules for Storm

Upstream Manhole

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	(mm)
S1.000	o	225	SS.130	63.000	61.500	1.275	1050
S1.001	o	225	SS.129	62.300	60.800	1.275	1050

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	(mm)
S1.000	30.200	43.1	SS.129	62.300	60.800	1.275	1050
S1.001	12.550	167.3	SS.128	62.470	60.725	1.520	0

Free Flowing Outfall Details for Storm

Outfall Pipe Number	Outfall Name	C. Level (m)	I. Level (m)	Min I. Level	D,L (mm)	W (m)
S1.001	SS.128	62.470	60.725	60.725	0	0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Foul Sewage per hectare (l/s)	0.000
PIMP (% impervious)	100	Additional Flow - % of Total Flow	10.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage	2.000
Hot Start (mins)	0	Inlet Coeffiecient	0.800
Hot Start Level (mm)	0	Run Time (mins)	60
Manhole Headloss Coeff (Global)	0.500	Output Interval (mins)	1
Number of Input Hydrographs	0	Number of Storage Structures	0
Number of Online Controls	0	Number of Time/Area Diagrams	0
Number of Offline Controls	0		

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type	Summer
Return Period (years)	100	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	18.800	Storm Duration (mins)	30
Ratio R	0.250		

Denis O'Sullivan & Associates		Page 4
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 3 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024 File SW Model - Catchm...	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF
Analysis Timestep Fine Inertia Status OFF
DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 2
Climate Change (%) 0

PN	Storm	Return Period	Climate Change	First X Surcharge	First Y Flood	First Z Overflow	O/F Act.	Lvl Exc.
S1.000	15 Winter	2	0%					
S1.001	15 Winter	2	0%					

PN	US/MH Name	Water		Flooded			Pipe	
		Level (m)	Surch'ed Depth (m)	Volume (m³)	Flow / Cap.	O'flow (l/s)	Flow (l/s)	Status
S1.000	SS.130	61.588	-0.137	0.000	0.32	0.0	23.9	OK
S1.001	SS.129	60.962	-0.063	0.000	0.85	0.0	29.3	OK

Appendix C – 1 in 100 Year Design Sheets

Denis O'Sullivan & Associates		Page 1
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area No. 1 Kinap, Old Whitechurch Rd Cork	
Date 24/06/2024 File SW Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years)	100	Add Flow / Climate Change (%)	10
M5-60 (mm)	18.800	Minimum Backdrop Height (m)	0.200
Ratio R	0.250	Maximum Backdrop Height (m)	1.500
Maximum Rainfall (mm/hr)	50	Min Design Depth for Optimisation (m)	1.200
Foul Sewage (l/s/ha)	0.00	Min Vel for Auto Design only (m/s)	1.00
Volumetric Runoff Coeff.	0.750	Min Slope for Optimisation (1:X)	500

Designed with Level Inverts

Time Area Diagram for Storm

Time (mins)	Area (ha)	Time (mins)	Area (ha)
0-4	0.628	4-8	0.583

Total Area Contributing (ha) = 1.211

Total Pipe Volume (m³) = 36.215

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	T.E. (mins)	DWF (l/s)	k (mm)	HYD SECT	DIA (mm)
S1.000	69.410	1.200	57.8	0.185	5.00	0.0	0.600	o	225
S1.001	4.640	0.100	46.4	0.001	0.00	0.0	0.600	o	225
S1.002	71.950	3.250	22.1	0.195	0.00	0.0	0.600	o	225
S2.000	22.045	0.132	167.0	0.045	5.00	0.0	0.600	o	300

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ Area (ha)	Σ DWF (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (l/s)	Flow (l/s)
S1.000	50.00	5.67	59.350	0.185	0.0	0.0	2.5	1.72	68.5	27.6
S1.001	50.00	5.71	58.150	0.186	0.0	0.0	2.5	1.93	76.6	27.7
S1.002	50.00	6.14	58.050	0.381	0.0	0.0	5.2	2.79	111.1	56.8
S2.000	50.00	5.30	54.500	0.045	0.0	0.0	0.6	1.21	85.8	6.7

Denis O'Sullivan & Associates		Page 2
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area No. 1 Kinap, Old Whitechurch Rd Cork	
Date 24/06/2024 File SW Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	T.E. (mins)	DWF (l/s)	k (mm)	HYD SECT	DIA (mm)
S1.003	21.990	0.132	166.6	0.074	0.00	0.0	0.600	o	300
S3.000	12.725	0.650	19.6	0.067	5.00	0.0	0.600	o	225
S3.001	99.900	1.250	79.9	0.273	0.00	0.0	0.600	o	300
S1.004	61.515	0.368	167.0	0.156	0.00	0.0	0.600	o	375
S4.000	81.440	1.000	81.4	0.162	5.00	0.0	0.600	o	225
S1.005	28.850	0.173	167.0	0.053	0.00	0.0	0.600	o	450
S1.006	5.085	0.424	12.0	0.000	0.00	0.0	0.600	o	450
S1.007	5.495	0.458	12.0	0.000	0.00	0.0	0.600	o	450
S1.008	5.265	0.439	12.0	0.000	0.00	0.0	0.600	o	450
S1.009	5.245	0.437	12.0	0.000	0.00	0.0	0.600	o	450
S1.010	11.035	0.920	12.0	0.000	0.00	0.0	0.600	o	450

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ Area (ha)	Σ DWF (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (l/s)	Flow (l/s)
S1.003	50.00	6.44	54.368	0.500	0.0	0.0	6.8	1.22	85.9	74.5
S3.000	50.00	5.07	57.300	0.067	0.0	0.0	0.9	2.97	118.1	10.0
S3.001	50.00	6.02	56.650	0.340	0.0	0.0	4.6	1.76	124.4	50.6
S1.004	50.00	7.18	54.236	0.996	0.0	0.0	13.5	1.40	154.5	148.4
S4.000	50.00	5.94	56.500	0.162	0.0	0.0	2.2	1.45	57.7	24.1
S1.005	50.00	7.48	53.868	1.211	0.0	0.0	16.4	1.57	249.8	180.4
S1.006	50.00	7.50	53.324	1.211	0.0	0.0	16.4	5.90	937.6	180.4
S1.007	50.00	7.51	51.108	1.211	0.0	0.0	16.4	5.89	937.4	180.4
S1.008	50.00	7.53	49.089	1.211	0.0	0.0	16.4	5.90	937.6	180.4
S1.009	50.00	7.54	47.087	1.211	0.0	0.0	16.4	5.89	937.3	180.4
S1.010	50.00	7.57	46.650	1.211	0.0	0.0	16.4	5.89	937.6	180.4

Denis O'Sullivan & Associates		Page 3
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area No. 1 Kinap, Old Whitechurch Rd Cork	
Date 24/06/2024 File SW Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Diam., L*W (mm)	Pipe Out			PN	Pipes In			Backdrop (mm)
				PN	Invert Level (m)	Diameter (mm)		PN	Invert Level (m)	Diameter (mm)	
SS.113	60.850	1.500	1050	S1.000	59.350	225					
SS.112	59.650	1.500	1050	S1.001	58.150	225	S1.000	58.150	225		
SS.111	59.550	1.500	1050	S1.002	58.050	225	S1.001	58.050	225		
SS.114	56.000	1.500	1050	S2.000	54.500	300					
SS.110	56.300	1.932	1200	S1.003	54.368	300	S1.002	54.800	225		357
							S2.000	54.368	300		
SS.109	58.800	1.500	1050	S3.000	57.300	225					
SS.108	58.150	1.500	1050	S3.001	56.650	300	S3.000	56.650	225		
SS.107	57.000	2.764	1350	S1.004	54.236	375	S1.003	54.236	300		1089
							S3.001	55.400	300		
SS.106	58.000	1.500	1050	S4.000	56.500	225					
SS.105	57.000	3.132	1350	S1.005	53.868	450	S1.004	53.868	375		1407
							S4.000	55.500	225		
SS.104	56.500	3.176	1350	S1.006	53.324	450	S1.005	53.695	450		371
SS.103	54.250	3.142	1350	S1.007	51.108	450	S1.006	52.900	450		1792
SS.102	52.000	2.911	1350	S1.008	49.089	450	S1.007	50.650	450		1561
SS.102	50.000	2.913	1350	S1.009	47.087	450	S1.008	48.650	450		1563
SS.101	48.000	1.350	1350	S1.010	46.650	450	S1.009	46.650	450		
SEX.SMH23	46.819	1.089	0		OUTFALL		S1.010	45.730	450		

Denis O'Sullivan & Associates		Page 4
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area No. 1 Kinap, Old Whitechurch Rd Cork	
Date 24/06/2024 File SW Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage Network W.12.4		

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH DIAM., L*W (mm)
S1.000	o	225	SS.113	60.850	59.350	1.275	1050
S1.001	o	225	SS.112	59.650	58.150	1.275	1050
S1.002	o	225	SS.111	59.550	58.050	1.275	1050
S2.000	o	300	SS.114	56.000	54.500	1.200	1050
S1.003	o	300	SS.110	56.300	54.368	1.632	1200
S3.000	o	225	SS.109	58.800	57.300	1.275	1050
S3.001	o	300	SS.108	58.150	56.650	1.200	1050
S1.004	o	375	SS.107	57.000	54.236	2.389	1350
S4.000	o	225	SS.106	58.000	56.500	1.275	1050
S1.005	o	450	SS.105	57.000	53.868	2.682	1350
S1.006	o	450	SS.104	56.500	53.324	2.726	1350
S1.007	o	450	SS.103	54.250	51.108	2.692	1350
S1.008	o	450	SS.102	52.000	49.089	2.461	1350

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH DIAM., L*W (mm)
S1.000	69.410	57.8	SS.112	59.650	58.150	1.275	1050
S1.001	4.640	46.4	SS.111	59.550	58.050	1.275	1050
S1.002	71.950	22.1	SS.110	56.300	54.800	1.275	1200
S2.000	22.045	167.0	SS.110	56.300	54.368	1.632	1200
S1.003	21.990	166.6	SS.107	57.000	54.236	2.464	1350
S3.000	12.725	19.6	SS.108	58.150	56.650	1.275	1050
S3.001	99.900	79.9	SS.107	57.000	55.400	1.300	1350
S1.004	61.515	167.0	SS.105	57.000	53.868	2.757	1350
S4.000	81.440	81.4	SS.105	57.000	55.500	1.275	1350
S1.005	28.850	167.0	SS.104	56.500	53.695	2.355	1350
S1.006	5.085	12.0	SS.103	54.250	52.900	0.900	1350
S1.007	5.495	12.0	SS.102	52.000	50.650	0.900	1350
S1.008	5.265	12.0	SS.102	50.000	48.650	0.900	1350

Denis O'Sullivan & Associates		Page 5
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area No. 1 Kinap, Old Whitechurch Rd Cork	
Date 24/06/2024 File SW Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	(mm)
S1.009	o	450	SS.102	50.000	47.087	2.463	1350
S1.010	o	450	SS.101	48.000	46.650	0.900	1350

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	(mm)
S1.009	5.245	12.0	SS.101	48.000	46.650	0.900	1350
S1.010	11.035	12.0	SEx.SMH23	46.819	45.730	0.639	0

Free Flowing Outfall Details for Storm

Outfall Pipe Number	Outfall Name	C. Level (m)	I. Level (m)	Min I. Level (m)	D,L (mm)	W (mm)
S1.010	SEx.SMH23	46.819	45.730	45.319	0	0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Foul Sewage per hectare (l/s)	0.000
PIMP (% impervious)	100	Additional Flow - % of Total Flow	10.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage	2.000
Hot Start (mins)	0	Inlet Coeffiecient	0.800
Hot Start Level (mm)	0	Run Time (mins)	60
Manhole Headloss Coeff (Global)	0.500	Output Interval (mins)	1
Number of Input Hydrographs	0	Number of Storage Structures	0
Number of Online Controls	0	Number of Time/Area Diagrams	0
Number of Offline Controls	0		

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type	Summer
Return Period (years)	100	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	18.800	Storm Duration (mins)	30
Ratio R	0.250		

Denis O'Sullivan & Associates		Page 6
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area No. 1 Kinap, Old Whitechurch Rd Cork	
Date 24/06/2024 File SW Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF
Analysis Timestep Fine Inertia Status OFF
DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 100
Climate Change (%) 0

PN	Storm	Return Period	Climate Change	First X Surchage	First Y Flood	First Z Overflow	O/F Act.	Lvl Exc.
S1.000	15 Winter	100	0%	100/15 Summer				
S1.001	15 Winter	100	0%	100/15 Summer				
S1.002	15 Winter	100	0%	100/15 Summer				
S2.000	15 Winter	100	0%	100/15 Summer	100/15 Summer			
S1.003	15 Winter	100	0%	100/15 Summer				4
S3.000	15 Winter	100	0%					
S3.001	15 Winter	100	0%	100/15 Summer				
S1.004	15 Winter	100	0%	100/15 Summer				
S4.000	15 Winter	100	0%	100/15 Summer				
S1.005	15 Winter	100	0%	100/15 Summer				
S1.006	15 Winter	100	0%					
S1.007	15 Winter	100	0%					
S1.008	15 Winter	100	0%					
S1.009	15 Winter	100	0%					
S1.010	15 Winter	100	0%					

PN	US/MH Name	Water Level (m)	Flooded			Pipe		Status
			Surched Depth (m)	Volume (m³)	Flow / Cap. (l/s)	O'flow (l/s)	Flow (l/s)	
S1.000	SS.113	60.174	0.599	0.000	0.87	0.0	57.8	SURCHARGED
S1.001	SS.112	59.320	0.945	0.000	1.43	0.0	63.8	SURCHARGED
S1.002	SS.111	59.174	0.899	0.000	0.97	0.0	105.0	SURCHARGED
S2.000	SS.114	56.009	1.209	0.000	0.88	0.0	66.6	FLOOD RISK
S1.003	SS.110	56.092	1.424	0.000	2.20	0.0	166.4	FLOOD RISK
S3.000	SS.109	57.378	-0.147	0.000	0.26	0.0	26.6	OK
S3.001	SS.108	57.228	0.278	0.000	1.03	0.0	124.4	SURCHARGED
S1.004	SS.107	55.893	1.282	0.000	1.87	0.0	271.1	SURCHARGED
S4.000	SS.106	56.874	0.149	0.000	1.07	0.0	60.3	SURCHARGED
S1.005	SS.105	54.586	0.269	0.000	1.63	0.0	347.6	SURCHARGED
S1.006	SS.104	53.670	-0.104	0.000	0.95	0.0	347.5	OK
S1.007	SS.103	51.443	-0.115	0.000	0.91	0.0	347.0	OK
S1.008	SS.102	49.429	-0.110	0.000	0.93	0.0	345.9	OK
S1.009	SS.102	47.429	-0.108	0.000	0.93	0.0	346.3	OK
S1.010	SS.101	46.913	-0.186	0.000	0.64	0.0	346.9	OK

Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 2 Kinap, Old Whitechurch Rd Cork
Date 23/07/2024 File SW Model - Catchm...	Designed By S.O.'Grady Checked By
Micro Drainage	Network W.12.4

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years)	100	Add Flow / Climate Change (%)	10
M5-60 (mm)	18.800	Minimum Backdrop Height (m)	0.200
Ratio R	0.250	Maximum Backdrop Height (m)	1.500
Maximum Rainfall (mm/hr)	50	Min Design Depth for Optimisation (m)	1.200
Foul Sewage (l/s/ha)	0.00	Min Vel for Auto Design only (m/s)	1.00
Volumetric Runoff Coeff.	0.750	Min Slope for Optimisation (1:X)	500

Designed with Level Inverts

Time Area Diagram for Storm

Time (mins)	Area (ha)	Time (mins)	Area (ha)
0-4	0.239	4-8	0.095

Total Area Contributing (ha) = 0.334

Total Pipe Volume (m³) = 7.695

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	T.E. (mins)	DWF (l/s)	k (mm)	HYD SECT	DIA (mm)
S1.000	24.315	0.200	121.6	0.045	5.00	0.0	0.600	o	225
S1.001	18.005	0.350	51.4	0.039	0.00	0.0	0.600	o	225
S1.002	13.295	0.250	53.2	0.040	0.00	0.0	0.600	o	225
S1.003	21.275	0.350	60.8	0.018	0.00	0.0	0.600	o	225
S1.004	14.490	0.250	58.0	0.036	0.00	0.0	0.600	o	225
S1.005	17.815	0.200	89.1	0.037	0.00	0.0	0.600	o	225

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ Area (ha)	Σ DWF (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (l/s)	Flow (l/s)
S1.000	50.00	5.34	59.150	0.045	0.0	0.0	0.6	1.18	47.1	6.7
S1.001	50.00	5.51	58.950	0.084	0.0	0.0	1.1	1.83	72.7	12.5
S1.002	50.00	5.63	58.600	0.124	0.0	0.0	1.7	1.80	71.5	18.5
S1.003	50.00	5.84	58.350	0.142	0.0	0.0	1.9	1.68	66.8	21.2
S1.004	50.00	5.98	58.000	0.178	0.0	0.0	2.4	1.72	68.4	26.5
S1.005	50.00	6.20	57.750	0.215	0.0	0.0	2.9	1.39	55.1	32.0

Denis O'Sullivan & Associates		Page 2
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 2 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024 File SW Model - Catchm...	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	T.E. (mins)	DWF (l/s)	k (mm)	HYD SECT	DIA (mm)
S1.006	17.830	0.250	71.3	0.030	0.00	0.0	0.600	o	225
S1.007	20.485	0.350	58.5	0.034	0.00	0.0	0.600	o	225
S1.008	21.330	0.300	71.1	0.055	0.00	0.0	0.600	o	225
S1.009	5.895	0.491	12.0	0.000	0.00	0.0	0.600	o	225
S1.010	4.335	0.361	12.0	0.000	0.00	0.0	0.600	o	225
S1.011	3.265	0.272	12.0	0.000	0.00	0.0	0.600	o	225
S1.012	11.205	0.915	12.2	0.000	0.00	0.0	0.600	o	225

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ Area (ha)	Σ DWF (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (l/s)	Flow (l/s)
S1.006	50.00	6.39	57.550	0.245	0.0	0.0	3.3	1.55	61.6	36.5
S1.007	50.00	6.59	57.300	0.279	0.0	0.0	3.8	1.71	68.1	41.6
S1.008	50.00	6.81	56.950	0.334	0.0	0.0	4.5	1.55	61.7	49.8
S1.009	50.00	6.84	56.366	0.334	0.0	0.0	4.5	3.80	151.0	49.8
S1.010	50.00	6.86	54.236	0.334	0.0	0.0	4.5	3.80	151.0	49.8
S1.011	50.00	6.87	52.347	0.334	0.0	0.0	4.5	3.80	151.0	49.8
S1.012	50.00	6.92	52.075	0.334	0.0	0.0	4.5	3.76	149.5	49.8

Denis O'Sullivan & Associates		Page 3
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 2 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024	Designed By S.O.'Grady	
File SW Model - Catchm...	Checked By	
Micro Drainage		Network W.12.4

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Diam., L*W (mm)	Pipe Out			PN	Pipes In			Backdrop (mm)
				PN	Invert Level (m)	Diameter (mm)		PN	Invert Level (m)	Diameter (mm)	
SS.127	60.650	1.500	1050	S1.000	59.150	225					
SS.126	60.450	1.500	1050	S1.001	58.950	225	S1.000	58.950	225		
SS.125	60.100	1.500	1050	S1.002	58.600	225	S1.001	58.600	225		
SS.124	59.850	1.500	1050	S1.003	58.350	225	S1.002	58.350	225		
SS.123	59.500	1.500	1050	S1.004	58.000	225	S1.003	58.000	225		
SS.122	59.250	1.500	1050	S1.005	57.750	225	S1.004	57.750	225		
SS.121	59.050	1.500	1050	S1.006	57.550	225	S1.005	57.550	225		
SS.120	58.800	1.500	1050	S1.007	57.300	225	S1.006	57.300	225		
SS.119	58.450	1.500	1050	S1.008	56.950	225	S1.007	56.950	225		
SS.118	58.150	1.784	1200	S1.009	56.366	225	S1.008	56.650	225	284	
SS.117	57.000	2.764	1200	S1.010	54.236	225	S1.009	55.875	225	1639	
SS.116	55.000	2.653	1200	S1.011	52.347	225	S1.010	53.875	225	1528	
SS.115	53.500	1.425	1050	S1.012	52.075	225	S1.011	52.075	225		
SEX.SMH17	52.660	1.500	0		OUTFALL		S1.012	51.160	225		

Denis O'Sullivan & Associates		Page 4
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 2 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024	Designed By S.O.'Grady	
File SW Model - Catchm...	Checked By	
Micro Drainage	Network W.12.4	

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH DIAM., (mm)	L*W
S1.000	o	225	SS.127	60.650	59.150	1.275	1050	
S1.001	o	225	SS.126	60.450	58.950	1.275	1050	
S1.002	o	225	SS.125	60.100	58.600	1.275	1050	
S1.003	o	225	SS.124	59.850	58.350	1.275	1050	
S1.004	o	225	SS.123	59.500	58.000	1.275	1050	
S1.005	o	225	SS.122	59.250	57.750	1.275	1050	
S1.006	o	225	SS.121	59.050	57.550	1.275	1050	
S1.007	o	225	SS.120	58.800	57.300	1.275	1050	
S1.008	o	225	SS.119	58.450	56.950	1.275	1050	
S1.009	o	225	SS.118	58.150	56.366	1.559	1200	
S1.010	o	225	SS.117	57.000	54.236	2.539	1200	
S1.011	o	225	SS.116	55.000	52.347	2.428	1200	
S1.012	o	225	SS.115	53.500	52.075	1.200	1050	

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH DIAM., (mm)	L*W
S1.000	24.315	121.6	SS.126	60.450	58.950	1.275	1050	
S1.001	18.005	51.4	SS.125	60.100	58.600	1.275	1050	
S1.002	13.295	53.2	SS.124	59.850	58.350	1.275	1050	
S1.003	21.275	60.8	SS.123	59.500	58.000	1.275	1050	
S1.004	14.490	58.0	SS.122	59.250	57.750	1.275	1050	
S1.005	17.815	89.1	SS.121	59.050	57.550	1.275	1050	
S1.006	17.830	71.3	SS.120	58.800	57.300	1.275	1050	
S1.007	20.485	58.5	SS.119	58.450	56.950	1.275	1050	
S1.008	21.330	71.1	SS.118	58.150	56.650	1.275	1200	
S1.009	5.895	12.0	SS.117	57.000	55.875	0.900	1200	
S1.010	4.335	12.0	SS.116	55.000	53.875	0.900	1200	
S1.011	3.265	12.0	SS.115	53.500	52.075	1.200	1050	
S1.012	11.205	12.2	SEx.SMH17	52.660	51.160	1.275	0	

Free Flowing Outfall Details for Storm

Outfall Pipe Number	Outfall Name	C. Level (m)	I. Level (m)	Min I. Level (m)	D.L (mm)	W (mm)
S1.012	SEx.SMH17	52.660	51.160	51.160	0	0

Denis O'Sullivan & Associates		Page 5
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 2 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024	Designed By S.O.'Grady	
File SW Model - Catchm...	Checked By	
Micro Drainage	Network W.12.4	

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Foul Sewage per hectare (l/s)	0.000
PIMP (% impervious)	100	Additional Flow - % of Total Flow	10.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage	2.000
Hot Start (mins)	0	Inlet Coeffiecient	0.800
Hot Start Level (mm)	0	Run Time (mins)	60
Manhole Headloss Coeff (Global)	0.500	Output Interval (mins)	1
Number of Input Hydrographs	0	Number of Storage Structures	0
Number of Online Controls	0	Number of Time/Area Diagrams	0
Number of Offline Controls	0		

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type	Summer
Return Period (years)	100	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	18.800	Storm Duration (mins)	30
Ratio R	0.250		

Denis O'Sullivan & Associates		Page 6
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 2 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024	Designed By S.O.'Grady	
File SW Model - Catchm...	Checked By	
Micro Drainage		Network W.12.4

Summary of Critical Results by Maximum Level (Rank 1) for Storm

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF
Analysis Timestep Fine Inertia Status OFF
DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 100
Climate Change (%) 0

PN	Storm	Return Period	Climate Change	First X Surcharge	First Y Flood	First Z Overflow	O/F Act.	Lvl Exc.
S1.000	15 Winter	100	0%					
S1.001	15 Winter	100	0%	100/15 Winter				
S1.002	15 Winter	100	0%	100/15 Summer				
S1.003	15 Winter	100	0%	100/15 Summer				
S1.004	15 Winter	100	0%	100/15 Summer				
S1.005	15 Winter	100	0%	100/15 Summer				
S1.006	15 Winter	100	0%	100/15 Summer				
S1.007	15 Winter	100	0%	100/15 Summer				
S1.008	15 Winter	100	0%	100/15 Summer				
S1.009	15 Winter	100	0%					
S1.010	15 Winter	100	0%	100/15 Summer				
S1.011	15 Winter	100	0%	100/15 Summer				
S1.012	15 Winter	100	0%					

PN	US/MH Name	Water		Flooded			Pipe		Status
		Level (m)	Surch'ed Depth (m)	Volume (m³)	Flow / Cap.	O'flow (l/s)	Flow (l/s)		
S1.000	SS.127	59.269	-0.106	0.000	0.41	0.0	17.6		OK
S1.001	SS.126	59.237	0.062	0.000	0.51	0.0	33.1		SURCHARGED
S1.002	SS.125	59.191	0.366	0.000	0.73	0.0	45.2		SURCHARGED
S1.003	SS.124	59.115	0.540	0.000	0.74	0.0	45.2		SURCHARGED
S1.004	SS.123	58.986	0.761	0.000	0.83	0.0	49.7		SURCHARGED
S1.005	SS.122	58.838	0.863	0.000	1.18	0.0	58.1		SURCHARGED
S1.006	SS.121	58.570	0.795	0.000	1.20	0.0	66.3		SURCHARGED
S1.007	SS.120	58.217	0.692	0.000	1.23	0.0	75.8		SURCHARGED
S1.008	SS.119	57.695	0.520	0.000	1.64	0.0	92.1		SURCHARGED
S1.009	SS.118	56.538	-0.053	0.000	0.94	0.0	92.3		OK
S1.010	SS.117	54.517	0.056	0.000	1.09	0.0	92.4		SURCHARGED
S1.011	SS.116	52.720	0.148	0.000	1.25	0.0	91.9		SURCHARGED
S1.012	SS.115	52.219	-0.081	0.000	0.73	0.0	92.1		OK

Denis O'Sullivan & Associates		Page 1
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 3 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024 File SW Model - Catchm...	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years)	100	Add Flow / Climate Change (%)	10
M5-60 (mm)	18.800	Minimum Backdrop Height (m)	0.200
Ratio R	0.250	Maximum Backdrop Height (m)	1.500
Maximum Rainfall (mm/hr)	50	Min Design Depth for Optimisation (m)	1.200
Foul Sewage (l/s/ha)	0.00	Min Vel for Auto Design only (m/s)	1.00
Volumetric Runoff Coeff.	0.750	Min Slope for Optimisation (1:X)	500

Designed with Level Inverts

Time Area Diagram for Storm

Time (mins)	Area (ha)	Time (mins)	Area (ha)
0-4	0.140	4-8	0.044

Total Area Contributing (ha) = 0.184

Total Pipe Volume (m³) = 1.700

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	T.E. (mins)	DWF (l/s)	k (mm)	HYD SECT	DIA (mm)
S1.000	30.200	0.700	43.1	0.145	5.00	0.0	0.600	o	225
S1.001	12.550	0.075	167.3	0.039	0.00	0.0	0.600	o	225

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ Area (ha)	Σ DWF (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (l/s)	Flow (l/s)
S1.000	50.00	5.25	61.500	0.145	0.0	0.0	2.0	2.00	79.4	21.6
S1.001	50.00	5.46	60.800	0.184	0.0	0.0	2.5	1.01	40.1	27.4

Denis O'Sullivan & Associates		Page 2
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 3 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024 File SW Model - Catchm...	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Diam., L*W (mm)	Pipe Out			PN	Pipes In			Backdrop (mm)
				PN	Invert Level (m)	Diameter (mm)		PN	Invert Level (m)	Diameter (mm)	
SS 130	63.000	1.500	1050	S1.000	61.500	225					
SS 129	62.300	1.500	1050	S1.001	60.800	225	S1.000		60.800	225	
SS 128	62.470	1.745	0		OUTFALL		S1.001		60.725	225	

Denis O'Sullivan & Associates		Page 3
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 3 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024 File SW Model - Catchm...	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	
Micro Drainage		

Pipeline Schedules for Storm

Upstream Manhole

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	(mm)
S1.000	o	225	SS.130	63.000	61.500	1.275	1050
S1.001	o	225	SS.129	62.300	60.800	1.275	1050

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	(mm)
S1.000	30.200	43.1	SS.129	62.300	60.800	1.275	1050
S1.001	12.550	167.3	SS.128	62.470	60.725	1.520	0

Free Flowing Outfall Details for Storm

Outfall Pipe Number	Outfall Name	C. Level (m)	I. Level (m)	Min I. Level	D,L (mm)	W (m)
S1.001	SS.128	62.470	60.725	60.725	0	0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Foul Sewage per hectare (l/s)	0.000
PIMP (% impervious)	100	Additional Flow - % of Total Flow	10.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage	2.000
Hot Start (mins)	0	Inlet Coeffiecient	0.800
Hot Start Level (mm)	0	Run Time (mins)	60
Manhole Headloss Coeff (Global)	0.500	Output Interval (mins)	1
Number of Input Hydrographs	0	Number of Storage Structures	0
Number of Online Controls	0	Number of Time/Area Diagrams	0
Number of Offline Controls	0		

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type	Summer
Return Period (years)	100	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	18.800	Storm Duration (mins)	30
Ratio R	0.250		

Denis O'Sullivan & Associates		Page 4
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 3 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024 File SW Model - Catchm...	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF
Analysis Timestep Fine Inertia Status OFF
DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 100
Climate Change (%) 0

PN	Storm	Return Period	Climate Change	First X Surcharge	First Y Flood	First Z Overflow	O/F Act.	Lvl Exc.
S1.000	15 Winter	100	0%					
S1.001	15 Winter	100	0%	100/15 Summer				

PN	US/MH Name	Water		Flooded			Pipe	
		Level (m)	Surch'ed Depth (m)	Volume (m³)	Flow / Cap.	O'flow (l/s)	Flow (l/s)	Status
S1.000	SS.130	61.683	-0.042	0.000	0.76	0.0	56.6 OK	
S1.001	SS.129	61.271	0.246	0.000	2.08	0.0	71.8 SURCHARGED	

Appendix D – Foul Sewer Design Sheets

Denis O'Sullivan & Associates		Page 1
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Residential Development Kilnap, Old Whitechurch Rd	
Date 22/07/2024 File FS Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

FOUL SEWERAGE DESIGN

Design Criteria for Foul - Main

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (l/s/ha)	0.00	Add Flow / Climate Change (%)	0
Industrial Peak Flow Factor	0.00	Minimum Backdrop Height (m)	0.200
Flow Per Person (l/per/day)	446.00	Maximum Backdrop Height (m)	1.500
Persons per House	1.00	Min Design Depth for Optimisation (m)	1.200
Domestic (l/s/ha)	0.00	Min Vel for Auto Design only (m/s)	0.75
Domestic Peak Flow Factor	6.00	Min Slope for Optimisation (1:X)	500

Designed with Level Inverts

Network Design Table for Foul - Main

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	DWF (l/s)	k (mm)	HYD SECT	DIA (mm)
F1.000	70.390	1.250	56.3	0.000	10	0.0	1.500	o	150
F1.001	7.375	0.150	49.2	0.000	0	0.0	1.500	o	150
F1.002	87.865	3.200	27.5	0.000	10	0.0	1.500	o	150
F2.000	22.075	0.368	60.0	0.000	4	0.0	1.500	o	150
F1.003	25.515	0.170	150.0	0.000	3	0.0	1.500	o	225
F3.000	16.235	0.850	19.1	0.000	4	0.0	1.500	o	150
F4.000	8.555	0.143	59.8	0.000	4	0.0	1.500	o	150

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ DWF (l/s)	Σ Hse	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (l/s)	Flow (l/s)
F1.000	59.050	0.000	0.0	10	0.0	13	0.41	1.17	20.7	0.3
F1.001	57.800	0.000	0.0	10	0.0	13	0.43	1.25	22.1	0.3
F1.002	57.650	0.000	0.0	20	0.0	15	0.65	1.68	29.6	0.6
F2.000	54.150	0.000	0.0	4	0.0	9	0.30	1.13	20.0	0.1
F1.003	53.782	0.000	0.0	27	0.0	24	0.38	0.94	37.2	0.8
F3.000	57.150	0.000	0.0	4	0.0	7	0.44	2.01	35.5	0.1
F4.000	56.443	0.000	0.0	4	0.0	9	0.30	1.13	20.0	0.1

Denis O'Sullivan & Associates						Page 2			
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork		Residential Development Kilnap, Old Whitechurch Rd							
Date 22/07/2024 File FS Model.MDX		Designed By S.O.'Grady Checked By							
Micro Drainage		Network W.12.4							

Network Design Table for Foul - Main

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	DWF (l/s)	k (mm)	HYD SECT	DIA (mm)
F3.001	102.685	1.711	60.0	0.000	12	0.0	1.500	o	150
F1.004	58.375	0.292	200.0	0.000	7	0.0	1.500	o	225
F5.000	20.915	0.349	60.0	0.000	2	0.0	1.500	o	150
F5.001	17.570	0.293	60.0	0.000	2	0.0	1.500	o	150
F5.002	13.525	0.225	60.0	0.000	1	0.0	1.500	o	150
F5.003	20.755	0.346	60.0	0.000	1	0.0	1.500	o	150
F5.004	16.400	0.273	60.0	0.000	2	0.0	1.500	o	150
F5.005	14.800	0.247	60.0	0.000	2	0.0	1.500	o	150
F5.006	17.500	0.292	60.0	0.000	2	0.0	1.500	o	150
F5.007	22.637	0.377	60.0	0.000	2	0.0	1.500	o	150
F5.008	21.175	0.353	60.0	0.000	2	0.0	1.500	o	150
F5.009	92.990	1.198	77.6	0.000	11	0.0	1.500	o	225
F1.005	28.605	0.143	200.0	0.000	4	0.0	1.500	o	225
F1.006	22.713	0.114	200.0	0.000	0	0.0	1.500	o	225

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ DWF (l/s)	Σ Hse	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (l/s)	Flow (l/s)
F3.001	56.300	0.000	0.0	20	0.0	18	0.50	1.13	20.0	0.6
F1.004	53.612	0.000	0.0	54	0.0	35	0.42	0.81	32.2	1.7
F5.000	58.750	0.000	0.0	2	0.0	6	0.24	1.13	20.0	0.1
F5.001	58.401	0.000	0.0	4	0.0	9	0.30	1.13	20.0	0.1
F5.002	58.109	0.000	0.0	5	0.0	10	0.32	1.13	20.0	0.2
F5.003	57.883	0.000	0.0	6	0.0	11	0.34	1.13	20.0	0.2
F5.004	57.537	0.000	0.0	8	0.0	12	0.37	1.13	20.0	0.2
F5.005	57.264	0.000	0.0	10	0.0	13	0.40	1.13	20.0	0.3
F5.006	57.017	0.000	0.0	12	0.0	14	0.42	1.13	20.0	0.4
F5.007	56.726	0.000	0.0	14	0.0	16	0.45	1.13	20.0	0.4
F5.008	56.348	0.000	0.0	16	0.0	17	0.47	1.13	20.0	0.5
F5.009	55.995	0.000	0.0	27	0.0	20	0.47	1.30	51.8	0.8
F1.005	53.320	0.000	0.0	85	0.0	44	0.49	0.81	32.2	2.6
F1.006	53.177	0.000	0.0	85	0.0	44	0.49	0.81	32.2	2.6

Denis O'Sullivan & Associates				Page 3
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork		Residential Development Kilnap, Old Whitechurch Rd		
Date 22/07/2024 File FS Model.MDX		Designed By S.O.'Grady Checked By		
Micro Drainage		Network W.12.4		

Manhole Schedules for Foul - Main

MH Name	MH CL (m)	MH Depth (m)	MH Diam., L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
FF.107	60.900	1.850	1200	F1.000	59.050	150				
FF.106	59.650	1.850	1200	F1.001	57.800	150	F1.000	57.800	150	
FF.105	59.500	1.850	1200	F1.002	57.650	150	F1.001	57.650	150	
FF.108	56.000	1.850	1200	F2.000	54.150	150				
FF.104	56.300	2.518	1200	F1.003	53.782	225	F1.002	54.450	150	\$93
							F2.000	53.782	150	
FF.111	59.000	1.850	1200	F3.000	57.150	150				
FF.110	58.250	1.807	1200	F4.000	56.443	150				
FF.109	58.150	1.850	1200	F3.001	56.300	150	F3.000	56.300	150	
							F4.000	56.300	150	
FF.103	56.900	3.288	1200	F1.004	53.612	225	F1.003	53.612	225	
							F3.001	54.589	150	902
FF.121	60.600	1.850	1200	F5.000	58.750	150				
FF.120	60.400	1.999	1200	F5.001	58.401	150	F5.000	58.401	150	
FF.119	60.100	1.991	1200	F5.002	58.109	150	F5.001	58.109	150	
FF.118	59.900	2.017	1200	F5.003	57.883	150	F5.002	57.883	150	
FF.117	59.550	2.013	1200	F5.004	57.537	150	F5.003	57.537	150	
FF.116	59.300	2.036	1200	F5.005	57.264	150	F5.004	57.264	150	
FF.115	59.100	2.083	1200	F5.006	57.017	150	F5.005	57.017	150	
FF.114	58.800	2.074	1200	F5.007	56.726	150	F5.006	56.726	150	
FF.113	58.400	2.052	1200	F5.008	56.348	150	F5.007	56.348	150	
FF.112	58.100	2.105	1200	F5.009	55.995	225	F5.008	55.995	150	
FF.102	57.000	3.680	1200	F1.005	53.320	225	F1.004	53.320	225	
							F5.009	54.797	225	1477
FF.101	57.500	4.323	1200	F1.006	53.177	225	F1.005	53.177	225	
FF.100	56.000	2.936	0		OUTFALL		F1.006	53.064	225	

Denis O'Sullivan & Associates		Page 4
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Residential Development Kilnap, Old Whitechurch Rd	
Date 22/07/2024 File FS Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

PIPELINE SCHEDULES for Foul - Main

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH DIAM., L*W (mm)
F1.000	o	150	FF.107	60.900	59.050	1.700	1200
F1.001	o	150	FF.106	59.650	57.800	1.700	1200
F1.002	o	150	FF.105	59.500	57.650	1.700	1200
F2.000	o	150	FF.108	56.000	54.150	1.700	1200
F1.003	o	225	FF.104	56.300	53.782	2.293	1200
F3.000	o	150	FF.111	59.000	57.150	1.700	1200
F4.000	o	150	FF.110	58.250	56.443	1.657	1200
F3.001	o	150	FF.109	58.150	56.300	1.700	1200
F1.004	o	225	FF.103	56.900	53.612	3.063	1200
F5.000	o	150	FF.121	60.600	58.750	1.700	1200
F5.001	o	150	FF.120	60.400	58.401	1.849	1200
F5.002	o	150	FF.119	60.100	58.109	1.841	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH DIAM., L*W (mm)
F1.000	70.390	56.3	FF.106	59.650	57.800	1.700	1200
F1.001	7.375	49.2	FF.105	59.500	57.650	1.700	1200
F1.002	87.865	27.5	FF.104	56.300	54.450	1.700	1200
F2.000	22.075	60.0	FF.104	56.300	53.782	2.368	1200
F1.003	25.515	150.0	FF.103	56.900	53.612	3.063	1200
F3.000	16.235	19.1	FF.109	58.150	56.300	1.700	1200
F4.000	8.555	59.8	FF.109	58.150	56.300	1.700	1200
F3.001	102.685	60.0	FF.103	56.900	54.589	2.161	1200
F1.004	58.375	200.0	FF.102	57.000	53.320	3.455	1200
F5.000	20.915	60.0	FF.120	60.400	58.401	1.849	1200
F5.001	17.570	60.0	FF.119	60.100	58.109	1.841	1200
F5.002	13.525	60.0	FF.118	59.900	57.883	1.867	1200

Denis O'Sullivan & Associates		Page 5
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Residential Development Kilnap, Old Whitechurch Rd	
Date 22/07/2024	Designed By S.O.'Grady	
File FS Model.MDX	Checked By	
Micro Drainage	Network W.12.4	

PIPELINE SCHEDULES for Foul - Main

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH DIAM., (mm)	L*W
F5.003	o	150	FF.118	59.900	57.883	1.867	1200	
F5.004	o	150	FF.117	59.550	57.537	1.863	1200	
F5.005	o	150	FF.116	59.300	57.264	1.886	1200	
F5.006	o	150	FF.115	59.100	57.017	1.933	1200	
F5.007	o	150	FF.114	58.800	56.726	1.924	1200	
F5.008	o	150	FF.113	58.400	56.348	1.902	1200	
F5.009	o	225	FF.112	58.100	55.995	1.880	1200	
F1.005	o	225	FF.102	57.000	53.320	3.455	1200	
F1.006	o	225	FF.101	57.500	53.177	4.098	1200	

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH DIAM., (mm)	L*W
F5.003	20.755	60.0	FF.117	59.550	57.537	1.863	1200	
F5.004	16.400	60.0	FF.116	59.300	57.264	1.886	1200	
F5.005	14.800	60.0	FF.115	59.100	57.017	1.933	1200	
F5.006	17.500	60.0	FF.114	58.800	56.726	1.924	1200	
F5.007	22.637	60.0	FF.113	58.400	56.348	1.902	1200	
F5.008	21.175	60.0	FF.112	58.100	55.995	1.955	1200	
F5.009	92.990	77.6	FF.102	57.000	54.797	1.978	1200	
F1.005	28.605	200.0	FF.101	57.500	53.177	4.098	1200	
F1.006	22.713	200.0	FF.100	56.000	53.064	2.711	0	

Free Flowing Outfall Details for Foul - Main

Outfall Pipe Number	Outfall Name	C. Level (m)	I. Level (m)	Min I. Level (m)	D,L (mm)	W (mm)
F1.006	FF.100	56.000	53.064	53.064	0	0

Denis O'Sullivan & Associates		Page 6
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Residential Development Kilnap, Old Whitechurch Rd	
Date 22/07/2024 File FS Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

Simulation Criteria for Foul - Main

Volumetric Runoff Coeff	0.750	Foul Sewage per hectare (l/s)	0.000
PIMP (% impervious)	100	Additional Flow - % of Total Flow	0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage	2.000
Hot Start (mins)	0	Inlet Coeffiecient	0.800
Hot Start Level (mm)	0	Run Time (mins)	60
Manhole Headloss Coeff (Global)	0.500	Output Interval (mins)	1
Number of Input Hydrographs		Number of Storage Structures	0
Number of Online Controls		Number of Time/Area Diagrams	0
Number of Offline Controls			

Denis O'Sullivan & Associates		Page 1
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Residential Development Kilnap Old Whitechurch Rd	
Date 23/10/2022 File FS Catchment Area...	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

FOUL SEWERAGE DESIGN

Design Criteria for Foul - Main

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (l/s/ha)	0.00	Add Flow / Climate Change (%)	0
Industrial Peak Flow Factor	0.00	Minimum Backdrop Height (m)	0.200
Flow Per Person (l/per/day)	446.00	Maximum Backdrop Height (m)	1.500
Persons per House	1.00	Min Design Depth for Optimisation (m)	1.200
Domestic (l/s/ha)	0.00	Min Vel for Auto Design only (m/s)	0.75
Domestic Peak Flow Factor	6.00	Min Slope for Optimisation (1:X)	500

Designed with Level Inverts

Denis O'Sullivan & Associates		Page 2
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Residential Development Kilnap Old Whitechurch Rd	
Date 23/10/2022 File FS Catchment Area...	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

Manhole Schedules for Foul - Main

MH Name	MH CL (m)	MH Depth (m)	MH Diam., L*W (mm)	Pipe Out			Pipes In			Backdrop (mm)
				PN	Invert Level (m)	Diameter (mm)	PN	Invert Level (m)	Diameter (mm)	
FF.126	63.350	1.850	1200	F1.000	61.500	150				
FF.125	63.350	1.990	1200	F1.001	61.360	150	F1.000	61.360	150	
FF.124	63.000	1.812	1200	F1.002	61.188	150	F1.001	61.188	150	
FF.127	62.100	1.050	1050	F2.000	61.050	150				
FF.123	62.300	1.653	1200	F1.003	60.647	150	F1.002	60.647	150	
FF.122	62.300	1.851	0		OUTFALL		F2.000	60.650	150	
							F1.003	60.449	150	3

Denis O'Sullivan & Associates		Page 3
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Residential Development Kilnap Old Whitechurch Rd	
Date 23/10/2022	Designed By S.O.'Grady	
File FS Catchment Area...	Checked By	
Micro Drainage	Network W.12.4	

PIPELINE SCHEDULES for Foul - Main

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH DIAM., L*W (mm)
F1.000	o	150	FF.126	63.350	61.500	1.700	1200
F1.001	o	150	FF.125	63.350	61.360	1.840	1200
F1.002	o	150	FF.124	63.000	61.188	1.662	1200
F2.000	o	150	FF.127	62.100	61.050	0.900	1050
F1.003	o	150	FF.123	62.300	60.647	1.503	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH DIAM., L*W (mm)
F1.000	8.425	60.2	FF.125	63.350	61.360	1.840	1200
F1.001	10.335	60.0	FF.124	63.000	61.188	1.662	1200
F1.002	32.465	60.0	FF.123	62.300	60.647	1.503	1200
F2.000	24.015	60.0	FF.123	62.300	60.650	1.500	1200
F1.003	11.885	60.0	FF.122	62.300	60.449	1.701	0

Free Flowing Outfall Details for Foul - Main

Outfall Pipe Number	Outfall Name	C. Level (m)	I. Level (m)	Min I. Level (m)	D, L (mm)	W (mm)
F1.003	FF.122	62.300	60.449	60.449	0	0

Simulation Criteria for Foul - Main

Volumetric Runoff Coeff PIMP (% impervious)	0.750 100	Foul Sewage per hectare (l/s) Additional Flow - % of Total Flow	0.000 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage	2.000
Hot Start (mins)	0	Inlet Coeffiecient	0.800
Hot Start Level (mm)	0	Run Time (mins)	60
Manhole Headloss Coeff (Global)	0.500	Output Interval (mins)	1
Number of Input Hydrographs	0	Number of Storage Structures	0
Number of Online Controls	0	Number of Time/Area Diagrams	0
Number of Offline Controls	0		

Appendix E – Storm Water Longitudinal Sections

Unit 5, Joyce House
Barrack Square
Ballincollig, Co. Cork

Catchment Area No. 1
Kinap, Old Whitechurch Rd
Cork

Date 24/06/2024
File SW Model.MDX

Designed By S.O.'Grady
Checked By

Micro Drainage

Network W.12.4

MH Name	SS.111	SS.113
Hor Scale 1100		
Ver Scale 500		
Datum (m) 48.000		
PN		S1.000
Dia (mm)		225
Slope (1:X)		57.8
Cover Level (m)	59.550	59.650
Invert Level (m)	58.150	58.150
Length (m)		69.410

MH Name	SS.107	SS.110	SS.111
Hor Scale 1100		3.001	
Ver Scale 500		2.000	
Datum (m) 45.000			
PN		S1.003	S1.002
Dia (mm)		300	225
Slope (1:X)		166.6	22.1
Cover Level (m)	57.000	56.300	59.550
Invert Level (m)	54.236	54.368	54.800
Length (m)		21.990	71.950

Unit 5, Joyce House
Barrack Square
Ballincollig, Co. Cork

Catchment Area No. 1
Kinap, Old Whitechurch Rd
Cork

Date 24/06/2024
File SW Model.MDX

Designed By S.O.'Grady
Checked By

Micro Drainage

Network W.12.4

MH Name	SS.103	SS.105	SS.107
Hor Scale 1100		4.000	3.001
Ver Scale 500			
Datum (m) 43.000			
PN		S1.005	S1.004
Dia (mm)		450	375
Slope (1:X)		167.0	167.0
Cover Level (m)	54.250 56.500	57.000	
Invert Level (m)	53.324 53.695	53.868	54.236 57.000
Length (m)	28.850	61.515	

MH Name	SEX.SMH23				
Hor Scale 1100					
Ver Scale 500					
Datum (m) 38.000					
PN					
Dia (mm)					
Slope (1:X)					
Cover Level (m)	46.819				
Invert Level (m)	45.730 46.650 47.087 49.089 51.108	48.000 50.000 52.000 54.250			
Length (m)					

Denis O'Sullivan & Associates		Page 3
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area No. 1 Kinap, Old Whitechurch Rd Cork	
Date 24/06/2024 File SW Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage		Network W.12.4

MH Name	SS.110	SS.114	
Hor Scale 1100		1.002	
Ver Scale 500			
Datum (m) 44.000			
PN		S2.000	
Dia (mm)		300	
Slope (1:X)		167.0	
Cover Level (m)	56.300		56.000
Invert Level (m)	54.368		54.500
Length (m)		22.045	

MH Name	SS.108		
Hor Scale 1100			
Ver Scale 500			
Datum (m) 46.000			
PN			
Dia (mm)			
Slope (1:X)			
Cover Level (m)	58.150		
Invert Level (m)	56.650	58.800	57.300
Length (m)			

Denis O'Sullivan & Associates		Page 4
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area No. 1 Kinap, Old Whitechurch Rd Cork	
Date 24/06/2024 File SW Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

MH Name	SS.107	SS.108
Hor Scale 1100		
Ver Scale 500	1.003	
Datum (m) 45.000		
PN		S3.001
Dia (mm)		300
Slope (1:X)		79.9
Cover Level (m)	57.000	58.150
Invert Level (m)	55.400	56.650
Length (m)		99.900

MH Name	SS.105	SS.106
Hor Scale 1100		
Ver Scale 500	1.004	
Datum (m) 44.000		
PN		S4.000
Dia (mm)		225
Slope (1:X)		81.4
Cover Level (m)	57.000	58.000
Invert Level (m)	55.500	56.500
Length (m)		81.440

Unit 5, Joyce House
Barrack Square
Ballincollig, Co. Cork

Catchment Area 2
Kinap, Old Whitechurch Rd
Cork

Date 23/07/2024
File SW Model - Catchm...

Designed By S.O.'Grady
Checked By

Micro Drainage

Network W.12.4

MH Name	SS.122	SS.123	SS.124	SS.125	SS.126	SS.127	
Hor Scale 1100							
Ver Scale 500							
Datum (m) 48.000							
PN		S1.004	S1.003	S1.002	S1.001	S1.000	
Dia (mm)		225	225	225	225	225	
Slope (1:X)		58.0	60.8	53.2	51.4	121.6	
Cover Level (m)	59.250	59.500	59.850	59.100	59.450	59.650	
Invert Level (m)	57.750	58.000	58.350	58.600	58.950	59.150	
Length (m)	14.490	21.275	13.295	18.005	24.315		

MH Name	SS.115			SS.119	SS.120	SS.121	SS.122	
Hor Scale 1100								
Ver Scale 500								
Datum (m) 44.000								
PN				S1.008	S1.007	S1.006	S1.005	
Dia (mm)				225	225	225	225	
Slope (1:X)				71.1	58.5	71.3	89.1	
Cover Level (m)	53.500	57.000	58.150	58.450	58.800	59.050	59.250	
Invert Level (m)	54.236	56.366	56.650	56.950	57.300	57.550	57.750	
Length (m)	21.330	20.485	17.830	17.815				

Denis O'Sullivan & Associates		Page 2
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 2 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024 File SW Model - Catchm...	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

MH Name	SEX.SMH17		
Hor Scale 1100			
Ver Scale 500			
Datum (m) 41.000			
PN			
Dia (mm)			
Slope (1:X)			
Cover Level (m)		52.660	
Invert Level (m)		51.160	52.075
Length (m)		53.500	

Denis O'Sullivan & Associates		Page 1
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area 3 Kinap, Old Whitechurch Rd Cork	
Date 23/07/2024 File SW Model - Catchm...	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

MH Name	SS.128	SS.129	SS.130	
Hor Scale 1000				
Ver Scale 500				
Datum (m) 50.000				
PN		S1.001	S1.000	
Dia (mm)		225	225	
Slope (1:X)		167.3	43.1	
Cover Level (m)	62.470			
Invert Level (m)	60.725 60.800 60.800	62.300		61.500 63.000
Length (m)	12.550		30.200	

Appendix F – Foul Sewer Longitudinal Sections

Denis O'Sullivan & Associates		Page 1
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Residential Development Kilnap, Old Whitechurch Rd	
Date 22/07/2024 File FS Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage Network W.12.4		

MH Name	FF.105	FF.107	
Hor Scale 1150			
Ver Scale 1000			
Datum (m) 36.000			
PN		F1.000	
Dia (mm)		150	
Slope (1:X)		56.3	
Cover Level (m)	59.500	59.650	60.900
Invert Level (m)	57.800	57.800	59.050
Length (m)		70.390	

MH Name	FF.104	FF.105	
Hor Scale 1150			
Ver Scale 1000			
Datum (m) 34.000			
PN		F1.002	
Dia (mm)		150	
Slope (1:X)		27.5	
Cover Level (m)	56.300	59.500	
Invert Level (m)	54.450	57.650	
Length (m)		87.865	

Unit 5, Joyce House
Barrack Square
Ballincollig, Co. Cork
Date 22/07/2024
File FS Model.MDX

Residential Development
Kilnap,
Old Whitechurch Rd
Designed By S.O.'Grady
Checked By

Micro Drainage

Network W.12.4

MH Name	FF.102	FF.103	FF.104	
Hor Scale 1150		5.009	3.001	2.000
Ver Scale 1000				
Datum (m) 32.000				
PN		F1.004	F1.003	
Dia (mm)		225	225	
Slope (1:X)		200.0	150.0	
Cover Level (m)	57.000		56.900	
Invert Level (m)	53.320		53.612	56.300
Length (m)		58.375	25.515	

MH Name	FF.100	FF.101	FF.102	
Hor Scale 1150				5.009
Ver Scale 1000				
Datum (m) 32.000				
PN		F1.006	F1.005	
Dia (mm)		225	225	
Slope (1:X)		200.0	200.0	
Cover Level (m)	56.000	57.500	57.000	
Invert Level (m)	53.064	53.177	53.320	
Length (m)		22.713	28.605	

Denis O'Sullivan & Associates		Page 3
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Residential Development Kilnap, Old Whitechurch Rd	
Date 22/07/2024 File FS Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage		Network W.12.4

MH Name	FF.104	FF.108	
Hor Scale 1150		1.002	
Ver Scale 1000			
Datum (m) 32.000			
PN		F2.000	
Dia (mm)		150	
Slope (1:X)		60.0	
Cover Level (m)	56.300		
Invert Level (m)	53.782	54.150	56.000
Length (m)		22.075	

MH Name	FF.109	FF.111	
Hor Scale 1150		4.000	
Ver Scale 1000			
Datum (m) 35.000			
PN		F3.000	
Dia (mm)		150	
Slope (1:X)		19.1	
Cover Level (m)	58.150		59.000
Invert Level (m)	56.300	57.150	
Length (m)		16.235	

Denis O'Sullivan & Associates		Page 4
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Residential Development Kilnap, Old Whitechurch Rd	
Date 22/07/2024 File FS Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage		Network W.12.4

MH Name	FF.103	FF.109	
Hor Scale 1150			4.000
Ver Scale 1000	1.003		
Datum (m) 33.000			
PN		F3.001	
Dia (mm)		150	
Slope (1:X)		60.0	
Cover Level (m)	56.900		58.150
Invert Level (m)	54.589		56.300
Length (m)		102.685	

MH Name	FF.109		
Hor Scale 1150			3.000
Ver Scale 1000			
Datum (m) 34.000			
PN			
Dia (mm)			
Slope (1:X)			
Cover Level (m)		58.150	
Invert Level (m)		58.250	56.300
Length (m)		56.443	

Denis O'Sullivan & Associates				Page 5
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork		Residential Development Kilnap, Old Whitechurch Rd		
Date 22/07/2024 File FS Model.MDX		Designed By S.O.'Grady Checked By		
Micro Drainage		Network W.12.4		

MH Name	FF.115	FF.116	FF.117	FF.118		FF.120	FF.121	
Hor Scale 1150								
Ver Scale 1000								
Datum (m) 36.000								
PN		F5.005	F5.004	F5.003		F5.001	F5.000	
Dia (mm)		150	150	150		150	150	
Slope (1:X)		60.0	60.0	60.0		60.0	60.0	
Cover Level (m)	59.100	57.017	57.264	59.300	59.550	59.900		
Invert Level (m)		57.264	57.537	57.537		58.109	60.400	
Length (m)		14.800	16.400	20.755		17.570	20.915	

MH Name	FF.112	FF.113	FF.114	FF.115	
Hor Scale 1150					
Ver Scale 1000					
Datum (m) 35.000					
PN		F5.008	F5.007	F5.006	
Dia (mm)		150	150	150	
Slope (1:X)		60.0	60.0	60.0	
Cover Level (m)	58.100	58.400	58.800	59.100	
Invert Level (m)	55.995	56.348	56.726	57.017	
Length (m)		21.175	22.637	17.500	

Denis O'Sullivan & Associates		Page 6
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Residential Development Kilnap, Old Whitechurch Rd	
Date 22/07/2024 File FS Model.MDX	Designed By S.O.'Grady Checked By	
Micro Drainage	Network W.12.4	

MH Name	FF.102	FF.112	
Hor Scale 1150			
Ver Scale 1000		1.004	
Datum (m) 33.000			
PN		F5.009	
Dia (mm)		225	
Slope (1:X)		77.6	
Cover Level (m)	57.000		58.100
Invert Level (m)	54.797		55.995
Length (m)		92.990	

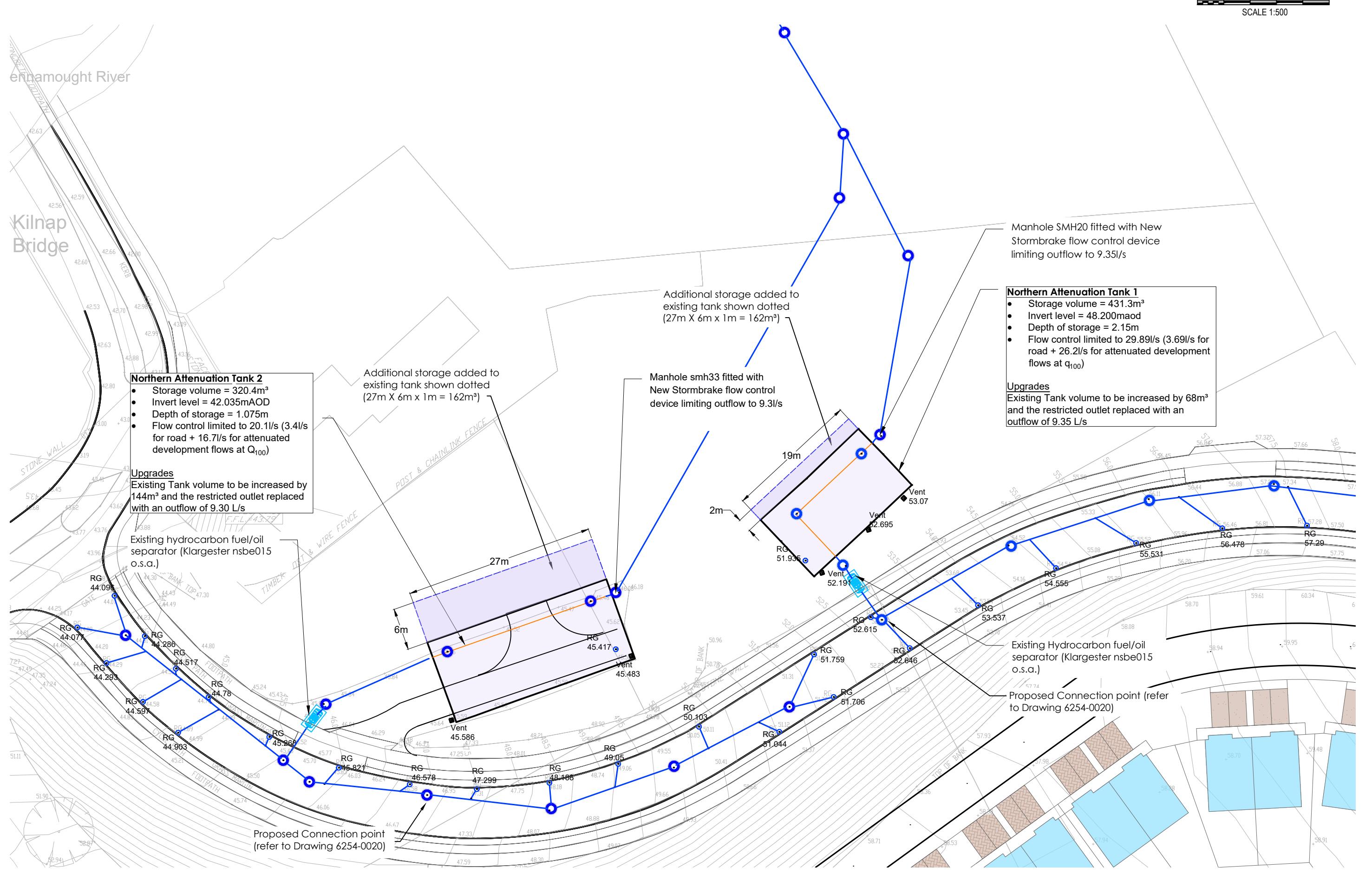
Unit 5, Joyce House
Barrack Square
Ballincollig, Co. Cork
Date 23/10/2022
File FS Catchment Area...

Residential Development
Kilnap
Old Whitechurch Rd
Designed By S.O.'Grady
Checked By

Micro Drainage

Network W.12.4

MH Name	FF.122		FF.124		
Hor Scale 1000			2.000		
Ver Scale 500					
Datum (m) 50.000					
PN			F1.002		
Dia (mm)			150		
Slope (1:X)			60.0		
Cover Level (m)		62.300			
Invert Level (m)		60.449 60.647 60.647		61.188 61.188 61.360 61.360 61.500	63.000 63.350 63.350
Length (m)			32.465		


MH Name	FF.123	FF.127	
Hor Scale 1000		1.002	
Ver Scale 500			
Datum (m) 50.000			
PN		F2.000	
Dia (mm)		150	
Slope (1:X)		60.0	
Cover Level (m)		62.300	
Invert Level (m)		60.650	61.050
Length (m)		24.015	

Appendix H – Existing Infrastructure & Proposed Upgrades

Existing Infrastructure Upgrades

Scale 1:500

**Stormwater Attenuation System
Installation Acceptance / Completion Certificate**

Project Name: OLD WHITE HURCH RD Customer: WARP + BURKE

Project Number: Tank 2 Date: 09/09/20

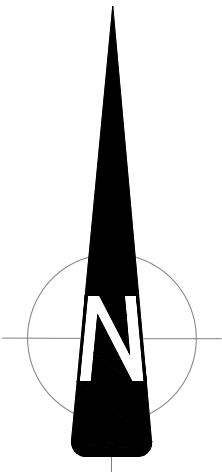
Location: CORK Partial: Final:

The Purpose of this acceptance/completion certificate is to accurately define the scope of work which has been completed by Geoline Ltd. in accordance with the project plans and specifications. Completing this scope of work allows Geoline Ltd. to transfer title to the contractor/owner, thereby allowing additional work to proceed or use by the owner as appropriate. It is acknowledged by Geoline Ltd. that certain additional documentation may be submitted after demobilisation.

Description of Work accepted by Client or Contractor

	Quantity	Comments
PVC Sealing Membrane	732 m ²	
Protective Geotextile	732 m ²	
Inlet Pipe Penetration	11 No.	Diameter 450 mm
Outlet Pipe Penetration	11 No.	Diameter 600 mm
Air Vent Unit	23 No.	Diameter 110mm (160mm) Other
Tank Dimensions	2.4 m x 1.6 m x 1.075 m deep	as per ESS Ltd. Drawing
Central Distribution Pipe	ACCESS CHAMBER 2 NO	Diameter 600 mm Slotted
Filter Geotextile To Pipe	Yes / No	
Flow Control Device	Yes / No	Litre/Second Release Rate
Inspection Point	Yes / No	
Backfilling Supervised	Yes / No	Backfill Material Used: Clause 804 / As Dug Material
Conc. Trust Blocks	Yes / No / Advised to Client or Clients Representative	
Guaranteed Seal	Yes / No	BYPASS Separator Yes / No Debris Basket Yes / No

For E.S.S Ltd. / Geoline Ltd.


For Client / Contractor

PRINT: BARRY HAYES

PRINT: THOMAS BARRETT

Signature: B.Hayes

Signature: TR

NORTHERN ATTENUATION TANK 2

- STORAGE VOLUME = 320.4m³
- INVERT LEVEL = 42.035mAOD
- DEPTH OF STORAGE = 1.075m
- FLOW CONTROL LIMITED TO 20.1l/s (3.4l/s FOR ROAD + 16.7l/s FOR ATTENUATED DEVELOPMENT FLOWS AT Q₁₀₀)

MANHOLE SMH33 FITTED WITH STORMBRAKE
FLOW CONTROL DEVICE LIMITING OUTFLOW TO
20.1l/s

HYDROCARBON FUEL/OIL
SEPARATOR (KLARGESTEIN)
NSF/ANSI 015 Q.S.A.

SMHOUTFALL

S-1.022
1:35.4
USIL 31.034m
300mm
DSIL 30.78m

SMH37
CL 36.000m

S-1.021
1:22.5
USIL 35.421m
300mm
DSIL 34.8m

S-1.020
1:23.9
USIL 40.324m
300mm
DSIL 39.635m

S-1.019
1:19.9
USIL 44.692m
225mm
DSIL 43.712m

S-1.018
1:33.9
USIL 48.186m

S-3.011
1:104
USIL 41.398m
300mm
DSIL 41.31m

SMH36
CL 40.838m

SMH35
CL 45.000m

— NORTHERN ATTENUATION TANK 1

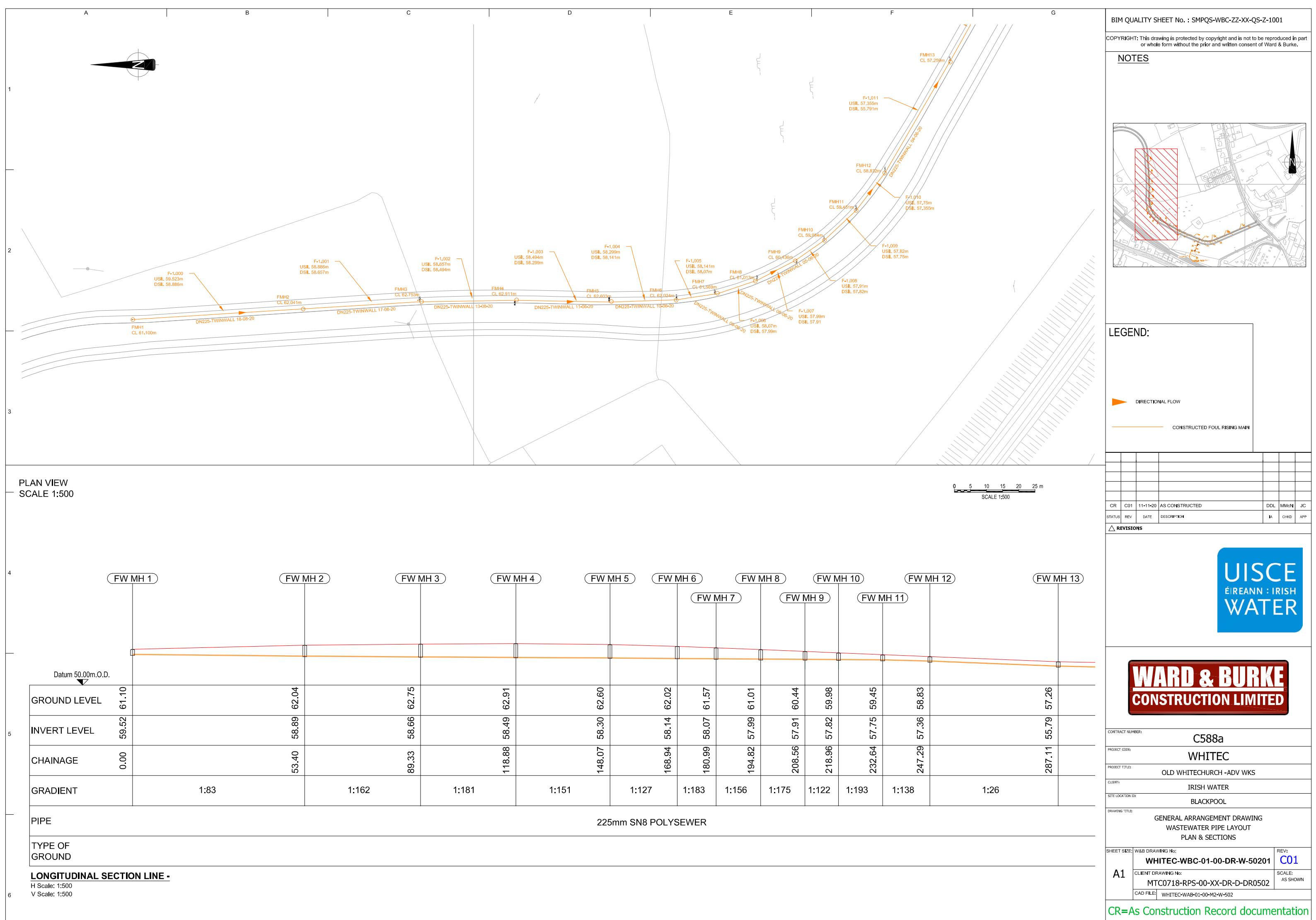
- STORAGE VOLUME = 431.3m^3
- INVERT LEVEL = 48.200mAOD
- DEPTH OF STORAGE = 2.15m
- FLOW CONTROL LIMITED TO 29,891/s (3,691/s FOR R)
FOR ATTENUATED DEVELOPMENT FLOWS AT Q_{100}

- MANHOLE SMH20 FITTED WITH STORMBRAKE FLOW CONTROL DEVICE LIMITING OUTFLOW TO 29.89l/s

ROCARBON FUEL/OIL TREATMENT (KLARGESTER)

— S-1.008
1:22.8
USIL 56.452m
300mm
DSII 55.421m

✓ S-1.007
1:26.6
USIL 57.392m
300mm
DSIL 56.452m

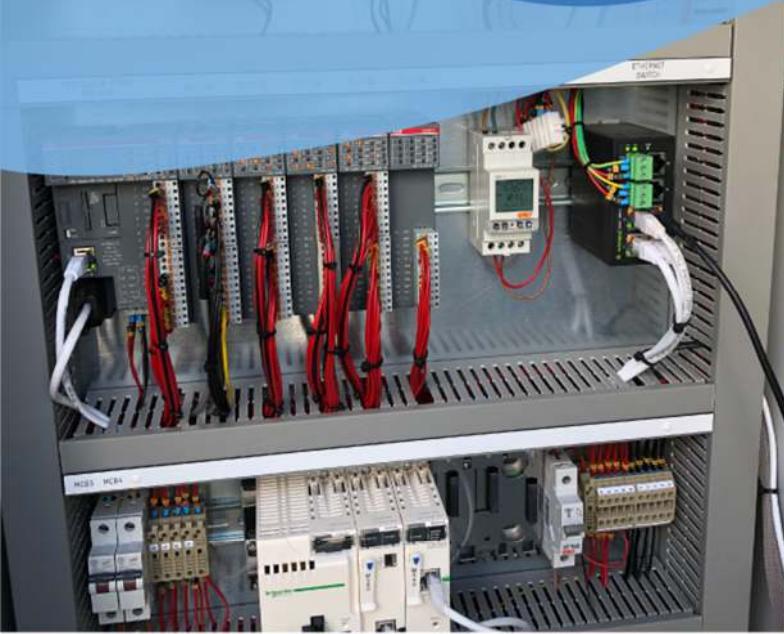

DO NOT SCALE DRAWING. IF IN DOUBT ASK.

A	09/12/20	As Build	MMCN				
REV	DATE	DESCRIPTION	DRN	CHK	APP	PM	

WARD & BURKE CONSTRUCTION LIMITED

Client:	CORK CITY COUNCIL	Project No.:
Project Title:	Old Whitechurch Road Infrastructure Project Main Contract	Draw No.:
Drawing Title:	Stormwater Drainage As-Built Drawing 4 of 6	Revision:
		Scale:

Appendix J – Proposed Foul Pump Station



MES3535 KILNAP HOUSES

Whitechurch Rd, Co. Cork

FOUL WATER PUMP SUMP – PROPOSAL

Shane Fox BEng PhD MIEI

Contents

1	Introduction	1
2	Design Criteria	1
3	Hydraulic Calculation	1
4	Proposed Tankage	2
4.1	Buoyancy check	2
4.2	Isolation Chamber	4
4.3	Pump Sump	5
4.4	Emergency Overflow and Storage	5
4.5	Valve Chamber	6
4.6	Meter Chamber	6
4.7	Control Kiosk	6
4.8	Control Panel	6
5	Access	7
6	System Guarantee	8
7	Maintenance Requirements	8

1 Introduction

This report details a proposal for the installation of a foul water pump sump for a proposed housing development in Whitechurch Rd, Co. Cork. This pump sump is designed as per part 5 of the Irish Water Code of Practice for wastewater infrastructure.

2 Design Criteria

The design conditions are as follows:

Hydraulic load: 96 housing units @ 446litres/unit = 42,816 litres

Rising main length: 310m

Static head: 10.6m (inc. pump sump)

Total head: 14.2m

Flow rate: 5.77 l/s

Rising main: 110mm HDPE SDR17

Inlet pipe: 225mm

Inlet invert 3.380m below ground level

*Assumes 2.7 persons per house with a load of 150 l/person/day and a 10% allowance for infiltration

3 Hydraulic Calculation

Please see attached friction loss calculation sheet and pump datasheet for pump details. The velocities were maintained between 0.75 and 1.8m/s within the rising main.

The levels within the pump sump are set to pump approximately 920 litres per discharge (250mm between cut in and cut out levels with a surface area of 3.68m²). Assuming the daily hydraulic load is concentrated over a 10-hour period the hourly flow rate would be 4,282 litres per hour. This would equate to approximately 5 starts per hour. This pump will run for approx. 2.65 minute per discharge (920 litres/cycle/ 5.77l/s = 159 seconds; or 2.65 minute).

4 Proposed Tankage

This proposal consists of approximately 45,200 litres of emergency storage (>24hr capacity), which is made up of the available capacity in the holding tank and pump sump and isolation chamber. The entire emergency storage is created between the pump's cut in level and the inlet invert level. In general, day-to-day operation influent enters the pump sump and is pumped via the rising main into the receiving sewer line. Flow is prevented from entering the holding tank by a flap valve. In the event of power or equipment failure the pump sump overflows into the holding tank. When the system returns to normal operation flow moves from the holding tank into the pump sump via the flap valve by gravity. A summary of the tankage is as follows:

- 1 no. isolation chamber
- 1 no. precast concrete pump sump
- 1 no. holding tank
- 1 no. precast concrete valve chamber
- 1 no. precast concrete meter chamber

4.1 Buoyancy check

The below buoyancy check includes for a water table at ground level and empty tanks. Density of materials are as follows:

Material	Density (kN/m ³)	Legend
Concrete	24	D _c
Stone	20	D _{st}
Soil	18	D _s
Water	10	D _w

PUMP SUMP

Component		Total Volume (m ³)	Weight (kg)	Provided Force (kN)
Tank		39.32	23,510.4	230,637
Risers		1.21	1,231	12.08
Overburden (stone)		1.47	2,940	28.84
Total	V_p	42.00	27,681	271.55
Minimum required force to prevent floatation (FOS of)	$F_r =$	494.45 kN	$F_r = V_p X 1.2 X 9.81$	
Difference between req. and provided force	$F_d =$	222.89 kN	$F_d = F_r - F_p$	
Required volume of concrete to prevent flotation	$C_v =$	15.92 m ³	$C_v = (F_d / (D_c - D_w))$	
Comments	16m ³ of concrete should be placed evenly around the toe of the tank.			

HOLDING TANK

Component		Total Volume (m ³)	Weight (kg)	Provided Force (kN)
Tank		48.69	27,400	268.79
Risers		4.25	3,423	33.58
Overburden (stone)		36.57	73,141	717.51
Total	V_p	89.51275	103,964	1019.89
Minimum required force to prevent floatation (FOS of)	$F_r =$	1053.74 kN	$F_r = V_p X 1.2 X 9.81$	
Difference between req. and provided force	$F_d =$	33.85 kN	$F_d = F_r - F_p$	
Required volume of concrete to prevent flotation	$C_v =$	2.42 m ³	$C_v = (F_d / (D_c - D_w))$	
Comments	4.5m ³ of concrete should be placed equally about the joint and top of the tank.			

VALVE CHAMBER

Component		Total Volume (m ³)	Weight (kg)	Provided Force (kN)
Tank		7.30	7,709	75.63
Risers		0.29	344	3.37
Overburden (stone)		1.04	2,497	24.50
Total	V_p	8.623	10,550	103.50
Minimum required force to prevent floatation (FOS of)	$F_r =$	101.51 kN	$F_r = V_p X 1.2 X 9.81$	
Difference between req. and provided force	$F_d =$	-1.99 kN	$F_d = F_r - F_p$	
Required volume of concrete to prevent flotation	$C_v =$	-0.14 m ³	$C_v = (F_d / (D_c - D_w))$	
Comments	Sufficient force is available to counteract uplift, therefore no anti-flootation measures are required.			

METER CHAMBER

Component	Total Volume (m ³)	Weight (kg)	Provided Force (kN)
Tank	3.41	3,410	33.45
Risers	0.12	190	1.86
Overburden (stone)	0.58	1,395	13.68
Total	V _p	4.11	4,995
Minimum required force to prevent floatation (FOS of 1.2)	F _r =	48.38 kN	F _r =V _p X1.2X9.81
Difference between req. and provided force	F _d =	-0.62 kN	F _d =F _r -F _p
Required volume of concrete to prevent floatation	C _v =	-0.04 m ³	C _v =(F _d /(D _c -D _w))
Comments	Sufficient force is available to counteract uplift, therefore no anti-flootation measures are required.		

ISOLATION CHAMBER

Component	Total Volume (m ³)	Weight (kg)	Provided Force (kN)
Tank	2.32	3,846	37.73
Risers	4.61	3,681	36.11
Total	V _p	6.9286	7,527
Minimum required force to prevent floatation (FOS of 1.2)	F _r =	81.56 kN	F _r =V _p X1.2X9.81
Difference between req. and provided force	F _d =	7.73 kN	F _d =F _r -F _p
Required volume of concrete to prevent floatation	C _v =	0.55 m ³	C _v =(F _d /(D _c -D _w))
Comments	0.55m ³ of concrete should be placed evenly around the toe of the tank.		

4.2 Isolation Chamber

This isolation chamber houses a penstock valve connected to the inlet.

- The precast concrete unit shall conform to BS 5911-4 and IS EN 1917. Joints shall provide equivalent water resistance as required in IS EN1992 – Part 3 (2006). The tank joints should be surrounded with not less than 150mm thickness of C20/25 to IS EN 206, 20mm aggregate size to IS EN 12620

4.3 Pump Sump

The pump sump should follow the following specifications:

- Precast concrete 6m deep 2.4m diameter pump sump
- Precast concrete 45-degree benching
- The precast concrete unit shall conform to BS 5911-4 and IS EN 1917. The tank should be backfilled with 500mm width of Clause 808 material, compacted in 300mm layers.
- For odour control should be installed as per STD-WW-34 (to be supplied and installed by others)
- The proposed pumps are 2 no. 4 pole Flygt NP 3102 foul submersible pumps (or similar)
- Pumps to be equipped with an automatic decoupling arrangement complete with twin stainless steel guide rails, easy lift, etc
- Automatic selection rotation of the duty/standby to be provided on an hours run basis with manual over-ride
- Pumps to be ex rated in accordance to hazardous area classification for foul wastewater
- Pumps to be operated as duty/standby
- The proposed pumps have an 80mm discharge connection
- The design should limit the number of starts to 10 per hour
- Pumps to be labelled at the top of pump sump and in kiosk
- Pumps to be equipped with certified stainless-steel lifting chain (IS EN 818-Part 7 (2009), suitably sized, with large links at 1m centres)
- DN100/DN80 EN598 ductile iron pipework within the wet well to be bracketed using stainless steel brackets
- Motors to include stator over temperature protection which automatically re-set when temperature returns to normal
- High level float switch
- An ultrasonic level sensor is used to communicate adjustable set points for pump unit cut in and cut out as well as top level liquid level cut in and low-level over-ride cut out to the control panel (Pulsar Ultra Lite with snore function)

4.4 Emergency Overflow and Storage

A separate precast concrete emergency overflow tank (holding tank) is required to create 24 hours emergency storage. This together with the storage above the cut in level is used to create this storage.

- 1 no. 38m³ precast concrete tank
- The precast concrete unit shall conform to BS 5911-4 and IS EN 1917. Joints shall provide equivalent water resistance as required in IS EN1992 – Part 3 (2006). The tank should be backfilled with 500mm width of Clause 808 material, compacted in 300mm layers.
- A 250mm dia. high level overflow is to be provided

- A 250mm dia. return pipe feeding back to the pump sump fitted with a proprietary flap valve within the wet well chamber

4.5 Valve Chamber

A separate valve chamber is required and should have the following specifications:

- The precast concrete unit shall conform to BS 5911-4 and IS EN 1917. The tank should be backfilled with 500mm width of Clause 808 material, compacted in 300mm layers. Ductile iron pipework complete with bends, valves, fittings, etc. to link all fittings
- A gate valve for each pump mounted horizontally
- A non-return valve for each pump mounted horizontally
- A gate valve mounted vertically equipped with a Bauer coupling linked to the rising main for pumping out of the rising main
- The chamber should be equipped with a drain to allow draining of the chamber into the pump sump

4.6 Meter Chamber

A separate meter chamber is required and should have the following specifications:

- The precast concrete unit shall conform to BS 5911-4 and IS EN 1917. The tank should be backfilled with 500mm width of Clause 808 material, compacted in 300mm layers. 1 no. magnetic flow meter (DN80 Siemens Mag 5100)
- Ductile iron pipework complete with fittings, etc. to link valve chamber to rising main

4.7 Control Kiosk

Control kiosk measuring 2.2m wide by 1.2m deep by 2m high shall be installed. This kiosk will have multiple locks to LPS 1175, SR3 or IS EN16257. An isolation station shall be provided within 2m of the pump sump to house connections. A small, galvanised steel kiosk shall be installed next to the control kiosk to house a 15m hose reel.

4.8 Control Panel

The following will be provided on the main control panel and within the control kiosk.

Control panel to be constructed to Form 2 in line with WIMES Electrical Specification and incorporate the following:

• Separate distribution board for an electrical heater, light, 220v and 110v waterproof socket	• Trip Indicator
• Soft Start operation	• Control Relays

- Duty standby assist operation
- 16amp 220v socket – sockets to be wall mounted
- MCCBs with door interlocks
- Contactor
- Ventilation Fan, Filter and Stat
- Hand/Off/Auto Selector Switch
- Start Switch
- Stop Button
- Run Indicator
- Terminal Block
- Ammeters
- Hour run meters
- Generator change-over switch
- Ultrasonic
- Flow meter
- Dial out GSM for – high water, pump trip, power loss
- Separate to the GSM please include for terminals for the above alarms (for future connection to a telemetry system)
- Adequate 3 phase power supply to be provided by others

5 Access

C250 galvanised steel lift assist covers will be provided for the following components:

Pump sump: 1 no. 1,400 X 800mm clear opening

Valve chamber: 1 no. 1,400 X 800mm clear opening

All covers should be as follows:

- lockable, fabricated from steel, galvanised to IS EN 1461 (2009) with non-slip surface and finished flush with roof slab of chamber
- Hinged with recessed padlock
- Each leaf to have assistance to ensure a lifting effort of 25kg
- Double, hinged access covers to be provided with inert gas charged or hydraulic operated springs suitable for solo lift

The meter chamber & holding tank is to be equipped with D400 800mm by 700mm ductile iron hinged cover.

6 System Guarantee

Molloy Environmental Systems provides a 2-year warranty to remedy any fault in products provided:

- That the fault is due to defects in design, materials or workmanship
- That the fault is reported to Molloy Environmental Systems during the guarantee period
- That the product has been used only under the conditions described in the care and maintenance instructions, and in applications for which it is intended
- That all service and repair is carried out by Molloy environmental personnel as per the maintenance requirements
- Therefore, this warranty does not apply to faults resulting from lack of maintenance, inadequate civil works, repair works carried out improperly or normal wear and tear
- Furthermore, Molloy Environmental Systems disclaims any liability in case of physical injuries, material or economic damages for those mentioned above.

7 Maintenance Requirements

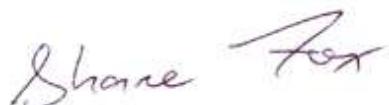
Operator's Inspection and maintenance duties

It is the responsibility of the owner to:

- Ensure the pump sump is operated and maintained in proper order
- Familiarise himself/herself with this operation and maintenance manual
- Familiarise himself/herself with operation safety instructions
- Ensure the system is serviced
- Ensure any faults are dealt with in a timely manner

The operation of the pump sump is the owner's responsibility. The general duties would involve.

Daily


- General visual check to see if alarm beacon is flashing

Annually

- Arrange for tests and a full service of pump and control equipment by Molloy Environmental System

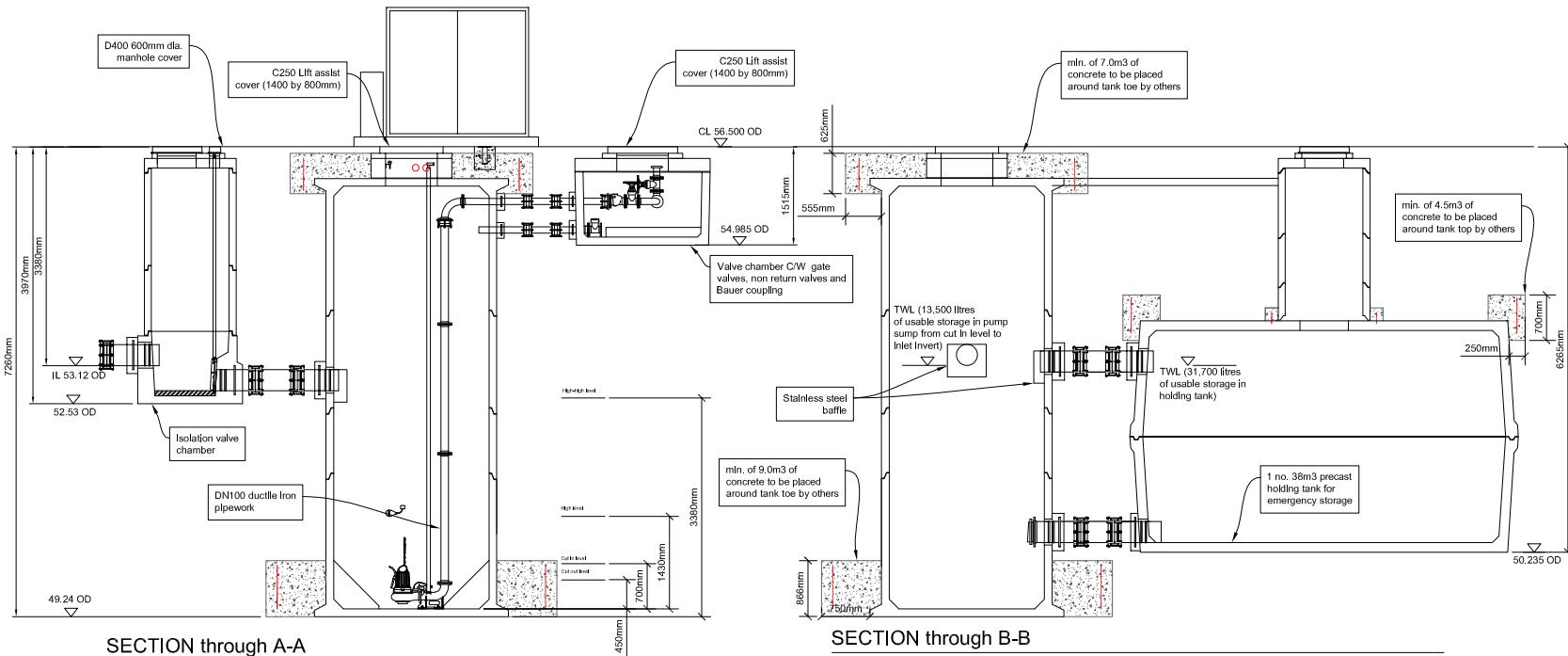
Please contact me if you require any additional information.

Yours sincerely,

A handwritten signature in black ink that reads "Shane Fox".

Shane Fox BEng PhD MIEI
Environmental Process Engineer

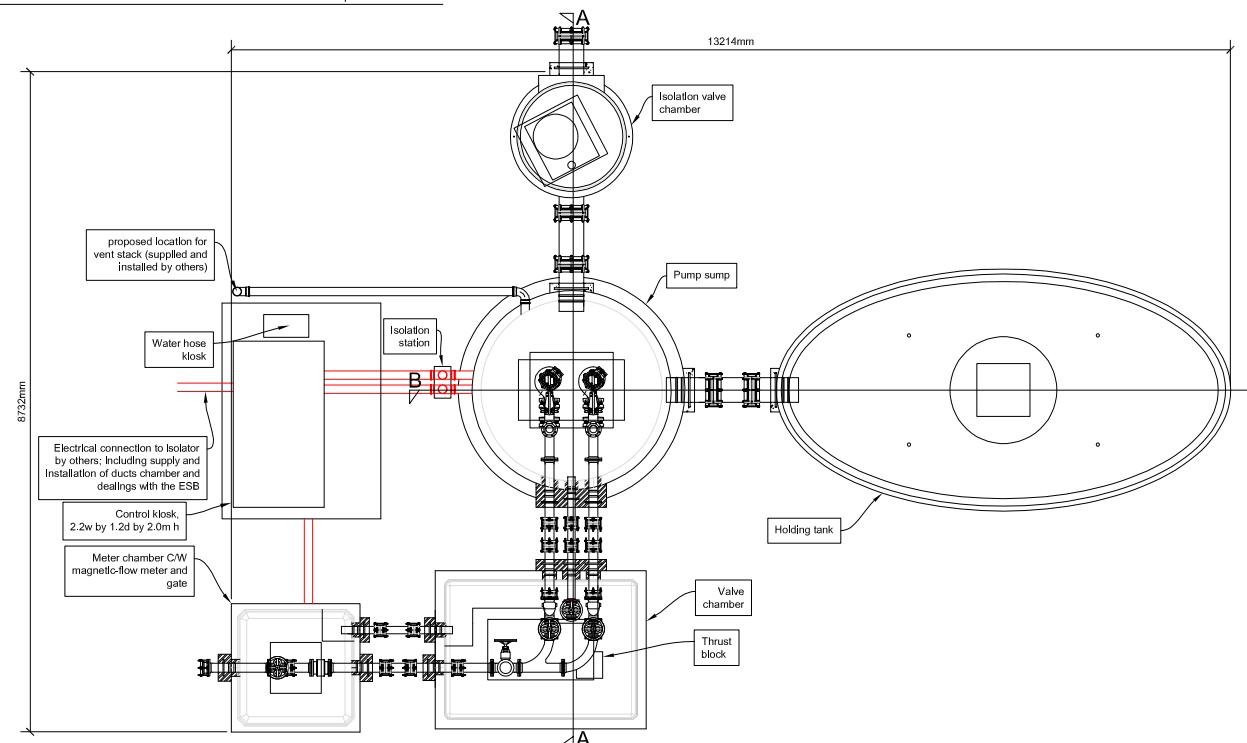
Molloy Environmental Systems

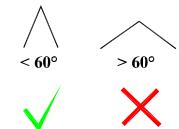

MOLLOY

Molloy Environmental Systems
Coleraine, Clara Rd.
Tullamore, Co. Offaly
Ireland, R35 D956

IE +353 57 93 26000

UK +44 3300 272225

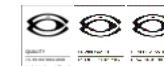

info@molloyprecast.com
www.molloyprecast.com


SECTION through A-A

SECTION through B-B

PLAN

Tank lifting limitations:
Max chain angle < 60°

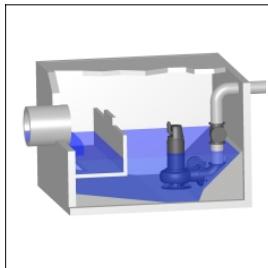

Damage caused by Incorrect lifting Is the responsibility of others

Notes:

- Backfill around each precast concrete component shall be placed so that a 500mm width of Clause 808 material, compacted in 300mm layers is provided to ensure adequate support beneath any structures or structural surrounds.
- Free draining granular material, 500mm wide, shall be provided round the wet well close to ground level of the unit
- Observe all safety regulations in regard to excavation and lifting requirements. Never leave opening uncovered or unattended at any time
- Specify any specific requirements prior to ordering. All civil works by customer
- Do not scale from this drawing. Only for illustration purposes

 MOLLOY
ENVIRONMENTAL SYSTEMS

Clara Rd., Tullamore, Co. Offaly
T: 057 9326000 E: info@molloyprecast.com
F: 057 9326060 W: www.molloyprecast.com



Title: Kilnap Houses proposed foul water pumping station

Drg. no.: MES3535 FPS 151223

Date: 15/12/2023

Drawn by: SF

Friction loss calculation

Pumped fluid Water, pure	Static head 10.1	Layout Wet well installation
Flow 6.37 l/s	Number of pumps 1	Calculation model Colebrook-White
Viscosity 1.569 mm ² /s	Nature of system Single head pump	

Type	ϕ (mm)	? or L	Qty.	v (m/s)	k (mm)	ΔH (m)
------	----------------	--------	------	------------	-----------	-------------------

ϕ = Diameter v = Velocity k = Pipe roughness ΔH = Head loss

Common discharge side pipe - Metal / Ductile iron cement lining

PN 16 / DN 100 (118x4x4 mm) / K factor for Wastewater acc. DWA-A110

Pipe length	102	14 m	1	0.7796	0.25	0.1167
Discharge Connection	102	0.3	1	0.7796		0.009292
Elbows	102	0.9	3	0.7796		0.02788
Inlet	102	1	1	0.7796		0.03097
Non-return valves	102	0.9	1	0.7796		0.02788
Outlet	102	1	1	0.7796		0.03097
T-piece	102	0.4	1	0.7796		0.01239
Valve	102	0.3	1	0.7796		0.009292
Total friction head						0.2654

Common discharge side pipe - GB / HPPE (PE100)

SDR17 / DN 110 (110) / K factor for Wastewater acc. DWA-A110

Pipe length	96.3	310 m	1	0.8746	0.25	3.467
Discharge Connection	96.3	0.3	1	0.8746		0.0117
Elbows	96.3	0.6	2	0.8746		0.02339
Inlet	96.3	1	1	0.8746		0.03898
Outlet	96.3	1	1	0.8746		0.03898
Valve	96.3	0.3	1	0.8746		0.0117
Total friction head						3.592

Friction loss head	3.857 m
Total static head	10.1 m
Total head	13.96 m

NP 3102 MT 3~ Adaptive 460

Patented self cleaning semi-open channel impeller, ideal for pumping in most waste water applications. Modular based design with high adaptation grade.

Technical specification

Curves according to: Water, pure Water, pure [100%], 4 °C, 999.9 kg/m³, 1.5692 mm²/s

Nominal (mean) data shown. Under- and over-performance from this data should be expected due to standard manufacturing tolerances.
Please consult your local Flygt representative for performance guarantees.

Configuration

Motor number
N3102.900 18-11-4AS-W
IE3 3.5KW

Installation type
P - Semi permanent, Wet

Impeller diameter
202 mm

Discharge diameter
100 mm

Pump information

Impeller diameter
202 mm

Material

Impeller
Grey cast iron

Discharge diameter
100 mm

Stator housing material
Grey cast iron

Inlet diameter
100 mm

Maximum operating speed
1500 rpm

Number of blades
2

Max. fluid temperature
40 °C

Project	Xylect-21591198	Created by	
Block		Created on	12/15/2023

NP 3102 MT 3~ Adaptive 460

Technical specification

Motor - General

Motor number N3102.900 18-11-4AS-W IE3 3.5KW	Phases 3~	Rated speed 1500 rpm	Rated power 3.5 kW
Approval No	Number of poles 4	Rated current 6.1 A	Stator variant 62
Frequency 50 Hz	Rated voltage 400 V	Insulation class H	Type of Duty S1
Version code 900			

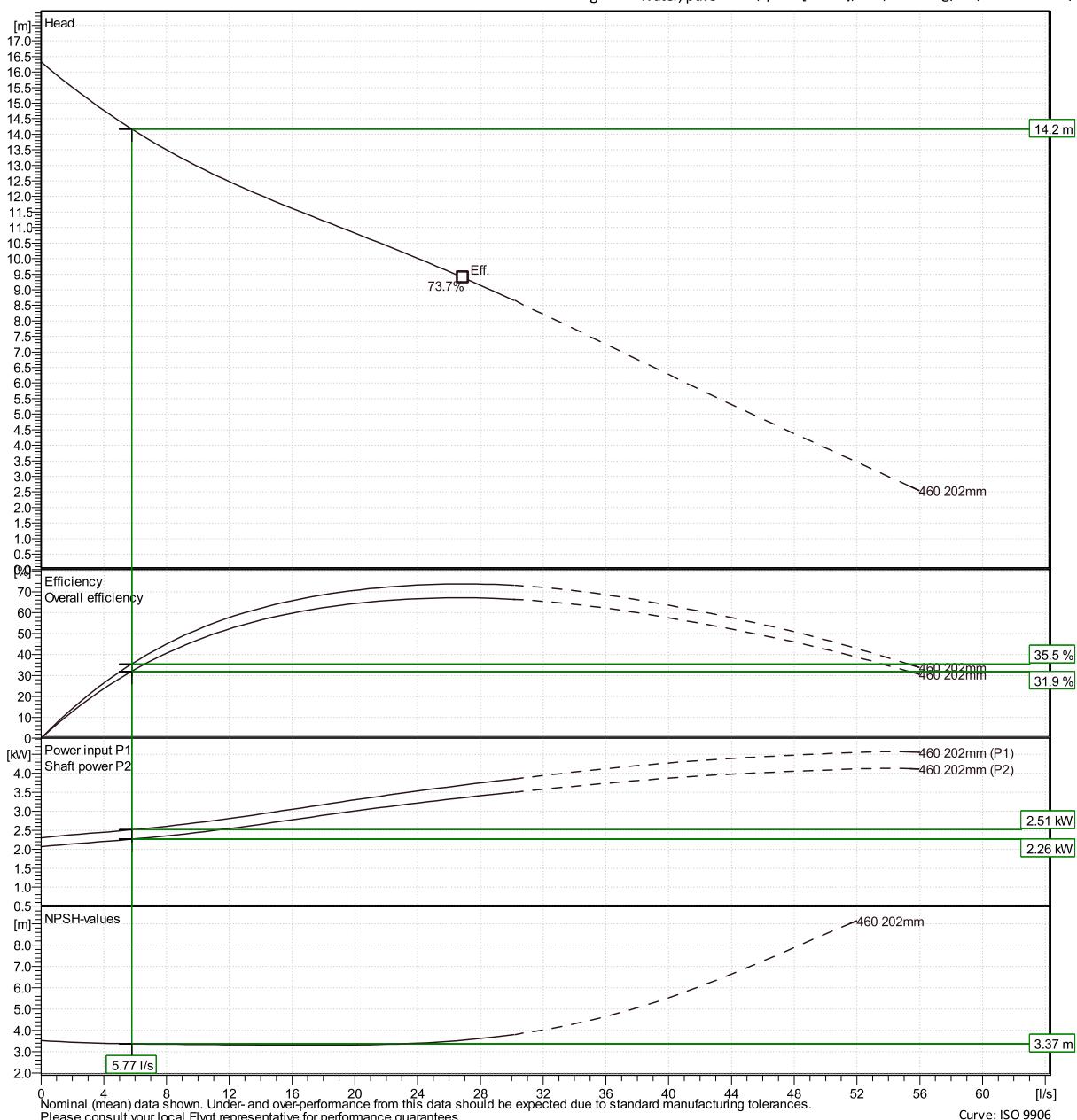
Motor - Technical

Power factor - 1/1 Load 0.91	Motor efficiency - 1/1 Load 90.9 %	Total moment of inertia 0.0315 kg m ²	Starts per hour max. 30
Power factor - 3/4 Load 0.86	Motor efficiency - 3/4 Load 91.4 %	Starting current, direct starting 38 A	
Power factor - 1/2 Load 0.75	Motor efficiency - 1/2 Load 89.5 %	Starting current, star-delta 12.7 A	

Project	Xylect-21591198	Created by	
Block		Created on	12/15/2023 Last update

NP 3102 MT 3~ Adaptive 460

Performance curve



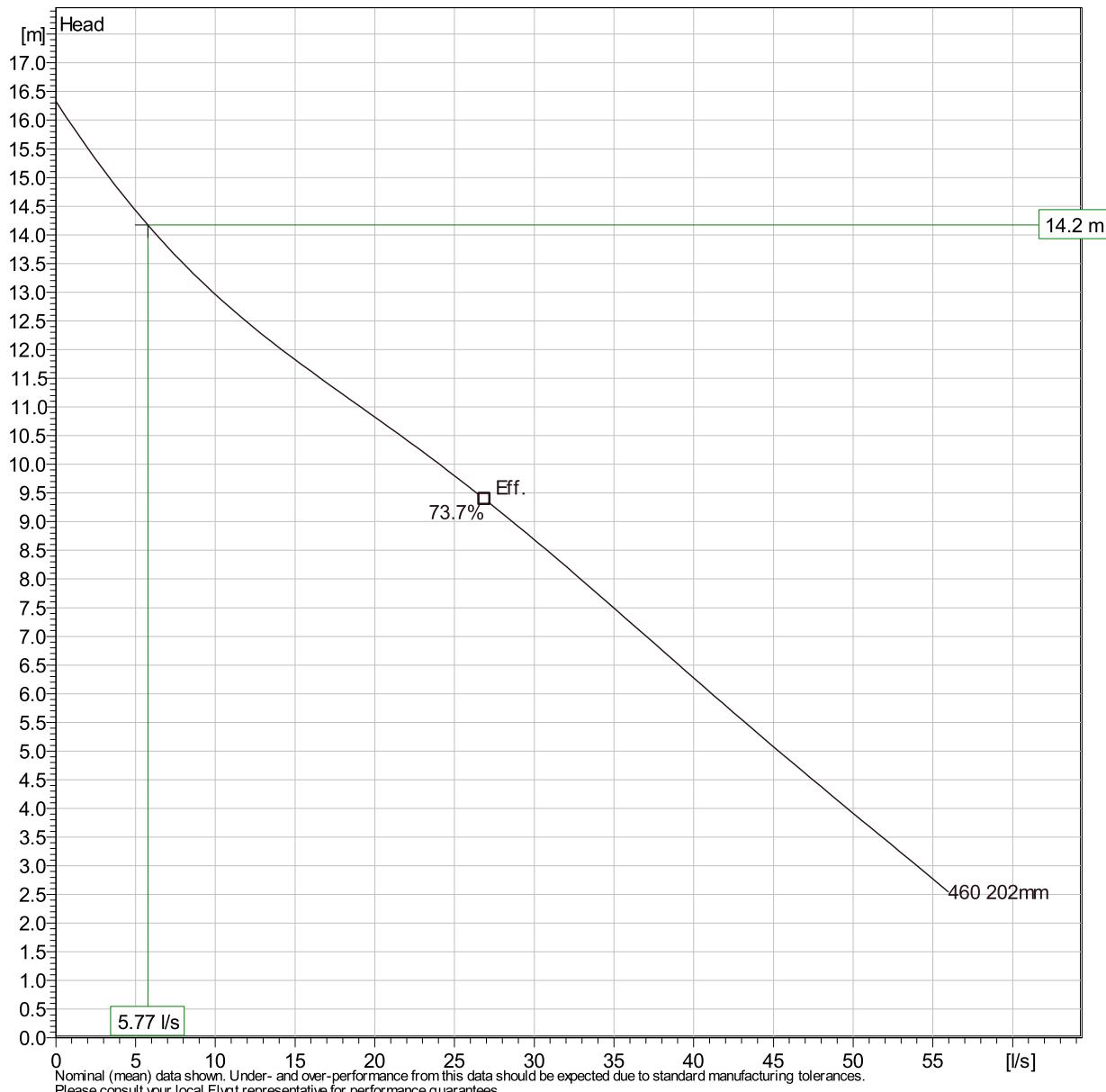
Duty point

Flow
5.77 l/s

Head
14.2 m

Curves according to: Water, pureWater, pure [100%], 4 °C, 999.9 kg/m³, 1.5692 mm²/s

Xylect-21591198


Created on 12/15/2023 Last update 12/15/2023

NP 3102 MT 3~ Adaptive 460

Duty Analysis

Curves according to: Water, pure [100%]; 4°C; 999.9kg/m³; 1.5692mm²/s

Operating characteristics

Pumps / Systems	Flow l/s	Head m	Shaft power kW	Flow l/s	Head m	Shaft power kW	Hydr.eff.	Spec. Energy kWh/m³	NPSH _{re} m
1	5.77	14.2	2.26	5.77	14.2	2.26	35.5 %	0.121	3.37

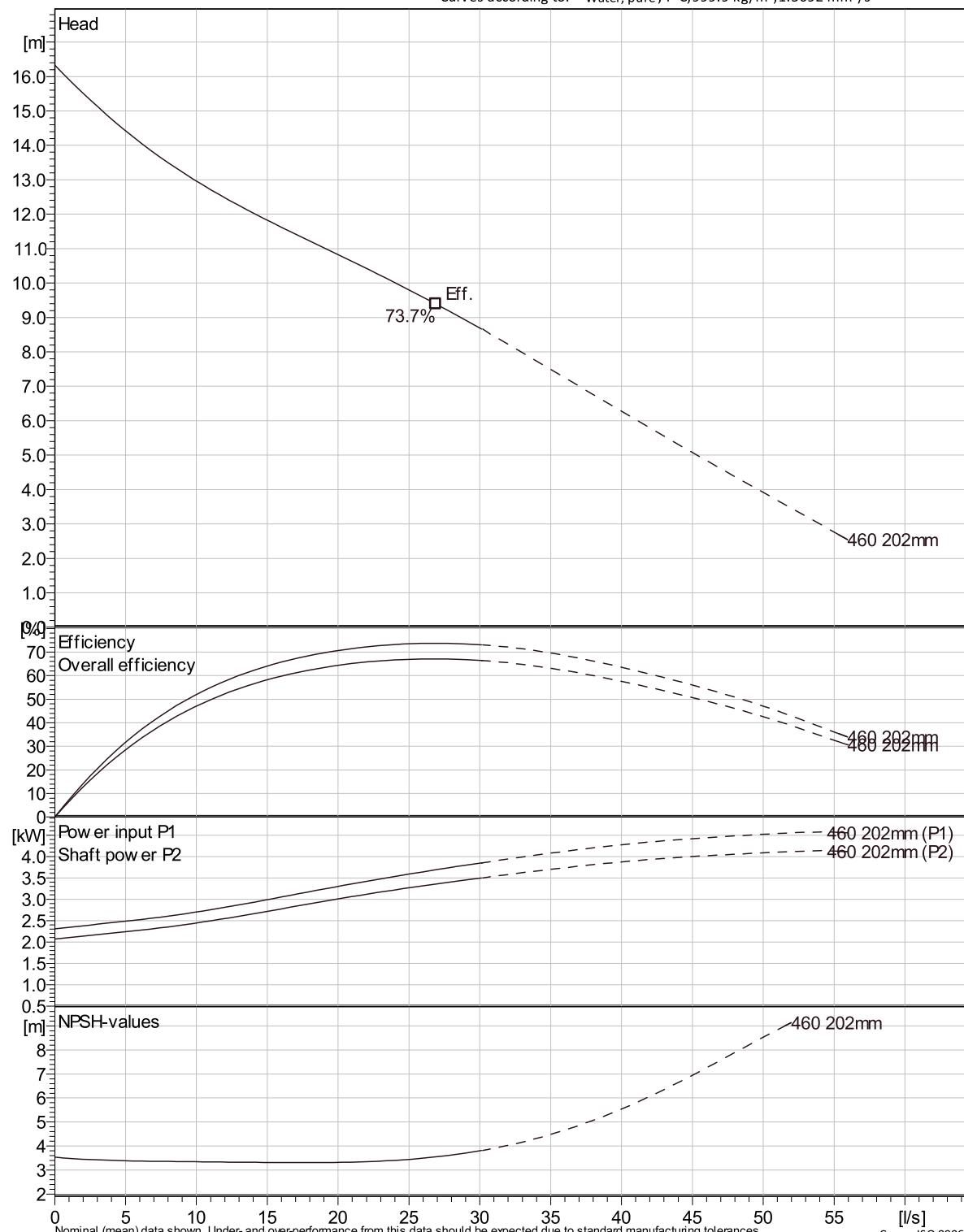
Project

Block Xylect-21591198

Created by

Created on 12/15/2023

Last update


12/15/2023

NP 3102 MT 3~ Adaptive 460

VFD Curve

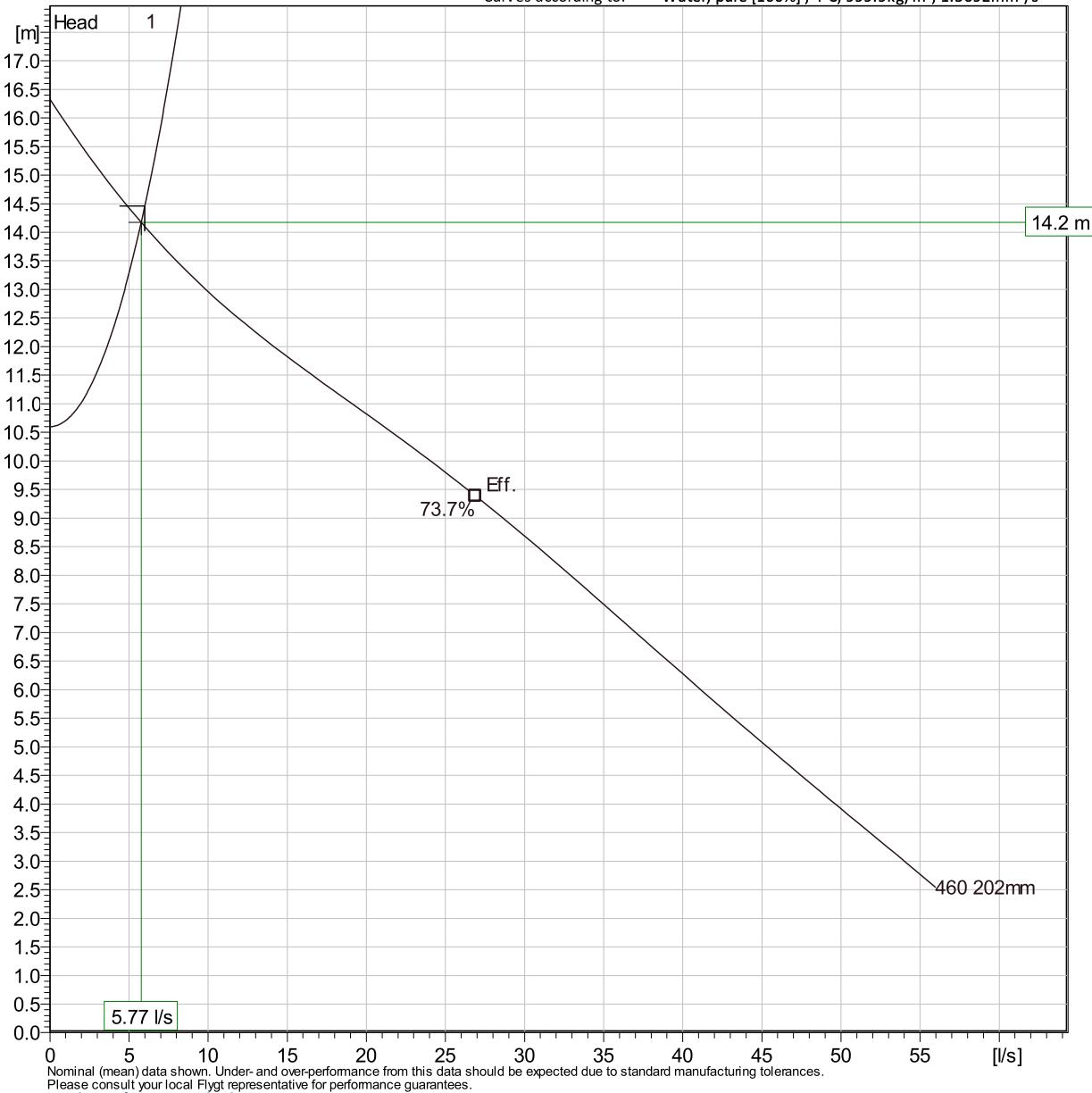
Curves according to: Water, pure, 4 °C, 999.9 kg/m³, 1.5692 mm²/s

Project Xylect-21591198

Block

Created by

Created on 12/15/2023 Last update 12/15/2023


Curve: ISO 9906

NP 3102 MT 3~ Adaptive 460

VFD Analysis

Curves according to: Water, pure [100%]; 4°C; 999.9kg/m³; 1.5692mm²/s

Operating Characteristics

Pumps / Systems	Frequency	Flow	Head	Shaft power	Flow	Head	Shaft power	Hydr.eff.	Specific energy	NPSH _{re}
	l/s	m	kW	l/s	m	kW		kWh/m³		m
1	50 Hz	5.77	14.2	2.26	5.77	14.2	2.26	35.5 %	0.121	3.37

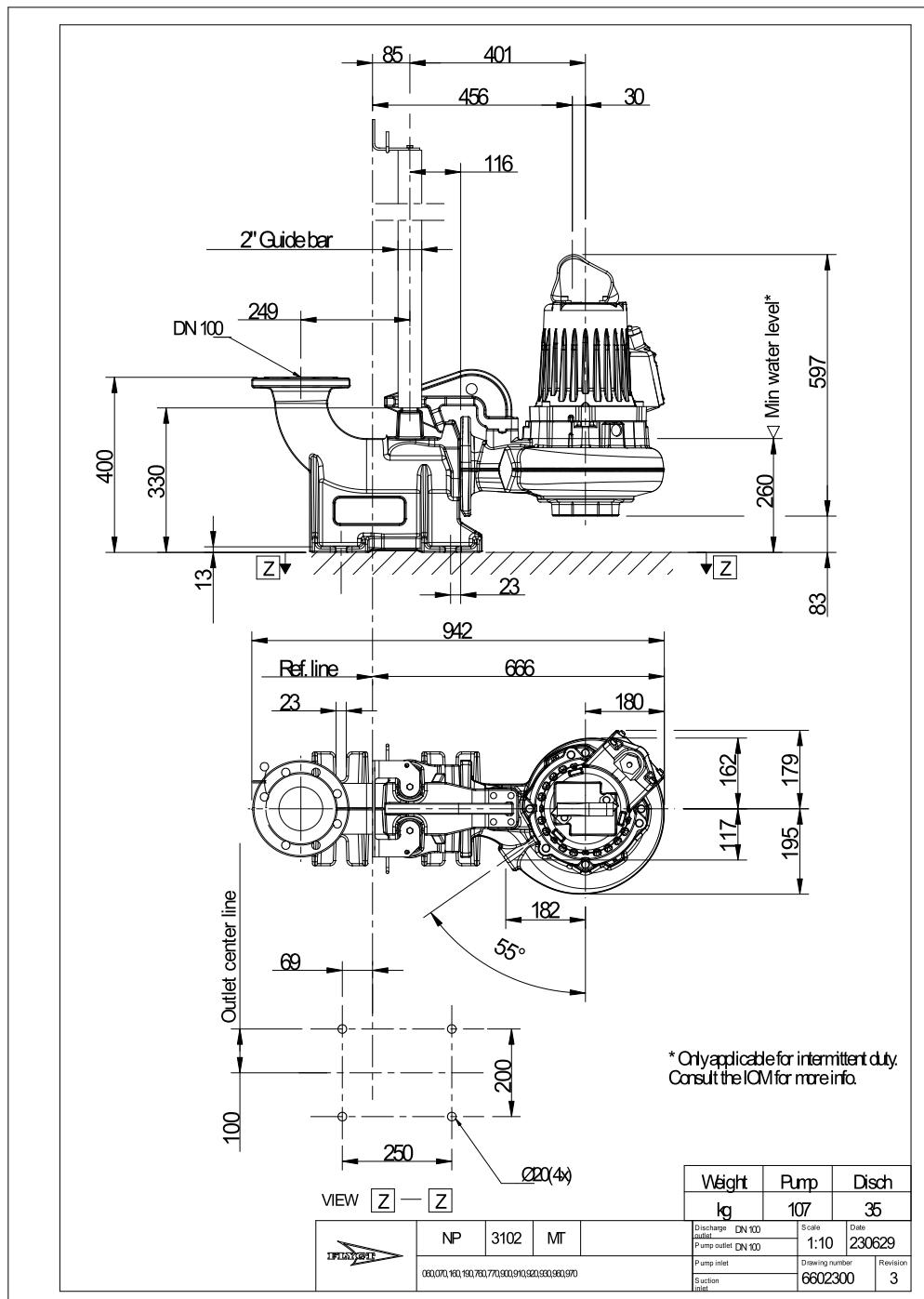
Project

Xylect-21591198

Created by

Block

Created on

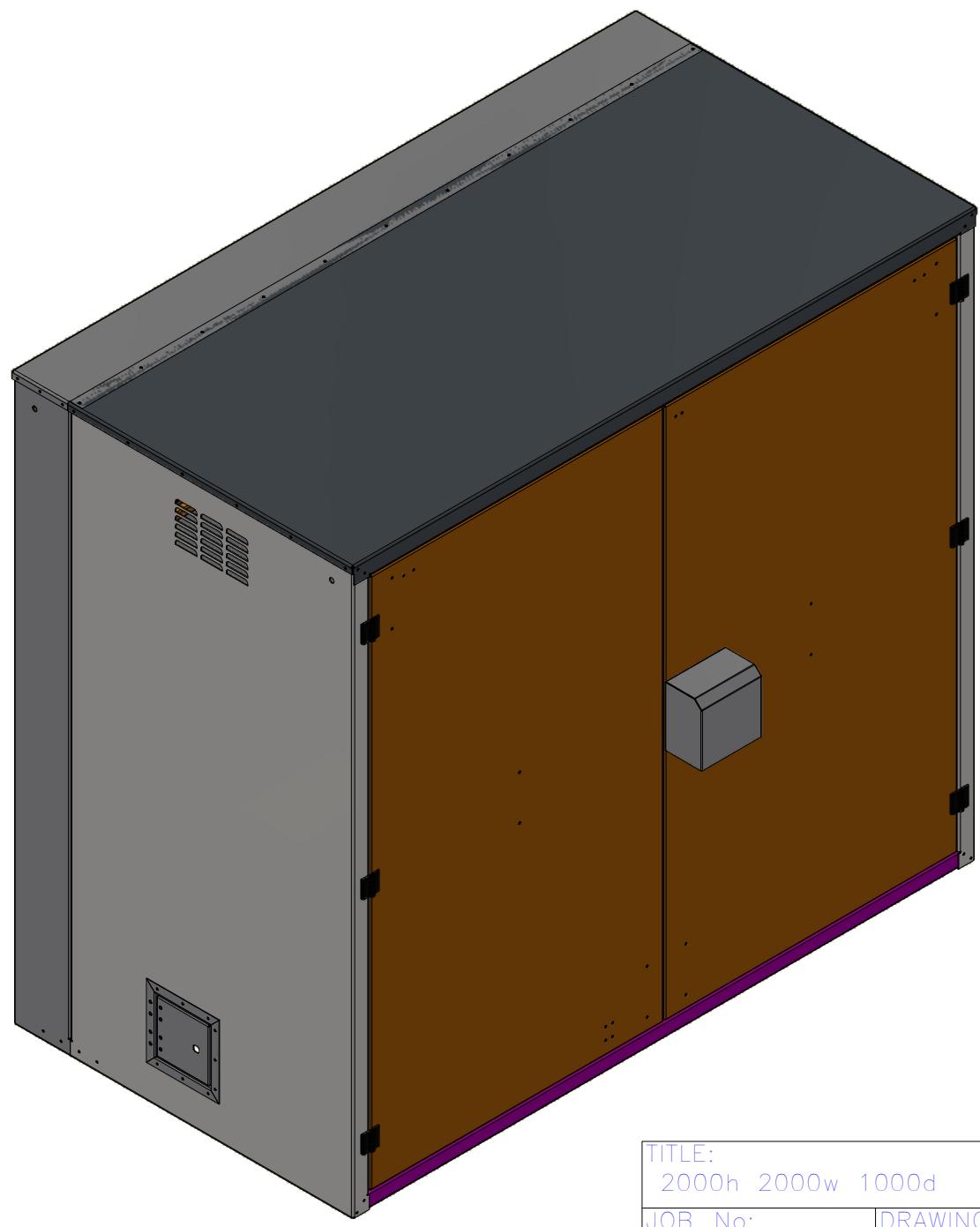
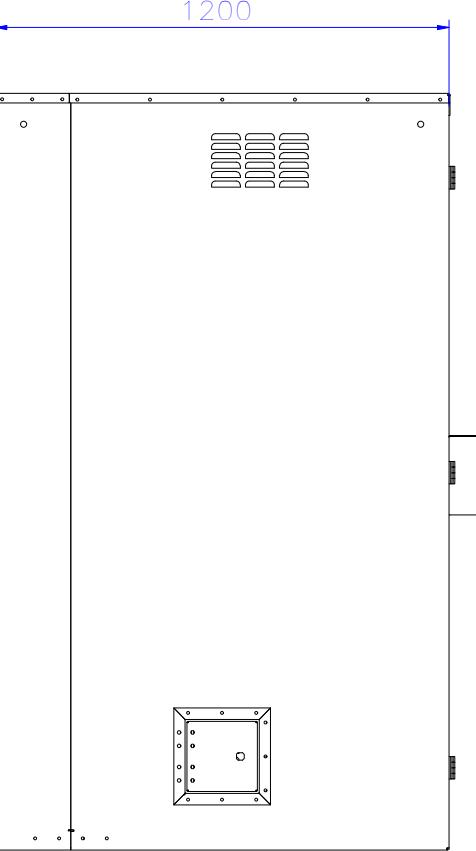
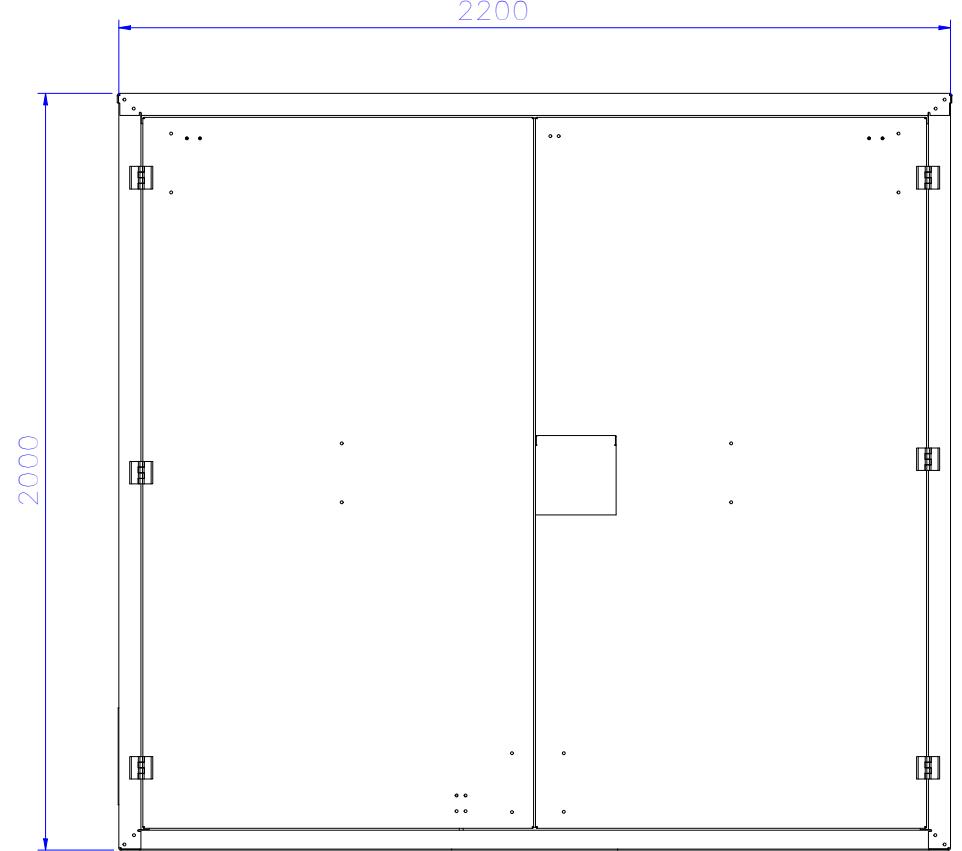

12/15/2023

Last update

12/15/2023

NP 3102 MT 3~ Adaptive 460

Dimensional drawing




Project
Block

Xylect-21591198

Created by

Created on 12/15/2023 Last update

12/15/2023

2200W 2000H 1200D

3mm Galvanised Steel
 Vented High & Low
 Double door hinged 90°
 Fully lockable door hasp, 3 point locking system
 Door Stays
 Generator Hatch
 Lock Cover
 90° Door stays
 IP Rated
 Finish in Moss Grenn (RAL6005)

TITLE: 2000h 2000w 1000d	
JOB No: EPS	DRAWING QTY: 1 OF 4
DRAWN BY: JL	DRAWN DATE: 23/03/2020
APPROVED BY:	APPROVED DATE:

Appendix K – Qbar Calculations

Denis O'Sullivan & Associates		Page 1
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area No. 1 Old Whitechurch Rd Kilnap, Cork	
Date 25/06/2024 File	Designed By S.O.'Grady Checked By	
Micro Drainage	Source Control W.12.4	

ICP SUDS Mean Annual Flood

Input

Return Period (years)	100	Soil	0.300
Area (ha)	1.769	Urban	0.000
SAAR (mm)	1135	Region Number	Ireland South

Results 1/s

QBAR Rural	5.7
QBAR Urban	5.7
Q100 years	10.4
Q1 year	4.8
Q30 years	9.0
Q100 years	10.4

Denis O'Sullivan & Associates		Page 1
Unit 5, Joyce House Barrack Square Ballincollig, Co. Cork	Catchment Area No. 2 Old Whitechurch Rd Kilnap, Cork	
Date 25/06/2024 File	Designed By S.O.'Grady Checked By	
Micro Drainage	Source Control W.12.4	

ICP SUDS Mean Annual Flood

Input

Return Period (years)	100	Soil	0.300
Area (ha)	1.839	Urban	0.000
SAAR (mm)	1135	Region Number	Ireland South

Results **1/s**

QBAR Rural	5.9
QBAR Urban	5.9

Q100 years	10.9
------------	------

Q1 year	5.0
Q30 years	9.4
Q100 years	10.9