

2 Clogheen Business Park,
Blarney Road, Cork,
Ireland.

T: +353 (0)21 4399799
F: +353 (0)21 4399797
E: admin@rka.ie
W: www.rka.ie

CONSULTING ENGINEERS

CIVIL | STRUCTURAL | PROJECT MANAGEMENT

SERVICES REPORT

Including :

**Proposed Road layout
Proposed Surface Water Discharge
Proposed Foul Water Discharge
Proposed Water Supply**

**Project Reference: Proposed Housing Project
At Poulavone, Ballincollig**

Client: Cork City Council

Project No.: 541000

Design By: B.A. & D.T.

Date: Jan 2020

Project Proposed Housing at Poulavone, Ballincollig	Job Ref. 0541000				
Section Introduction	Sheet no./rev				
Calc. By d.t.	Date Sept 19	Chck'd by b.a.	Date Jan 20	App'd by	Date

List of Contents

1. Introduction

2. Surface Water Design and Soakaway

3. Foul Water Details

4. Water & Firefighting Supply

5. Proposed Roads and Traffic Calming Design

7. Proposed Roads Layout

8. Proposed Drainage Layout

9. Proposed Watermain Layout

Appendices:-

-BRE365 report with appendices by Tim O'Connor Engineering

Project Proposed Housing at Poulavone, Ballincollig	Job Ref. 0541000				
Section Introduction	Sheet no./rev				
Calc. By d.t.	Date Sept 19	Chck'd by b.a.	Date Jan 20	App'd by	Date

Introduction

The subject lands of the application are located to the southwest of the Poulavone roundabout on the eastern end of Ballincollig village. The site is a greenfield vacant site covered by scrub vegetation.

The estate known as Inniscarra view is immediately to the west of the site. There are two cul de sacs in Inniscarra view, Hawthorn Avenue to the north and Sweet Briar Lane to the south, which are proposed to service this development.

The storm sewers serving Inniscarra View are too high to permit connection by gravity from the proposed site. There is a storm sewer along the N22 to the east of the site but permission to connect to this sewer has not been forthcoming from TII. Therefore it is proposed to dispose of the surface water on site by means of a large soak away.

The foul sewers serving Inniscarra View are also to high to permit connection by gravity from the proposed site. It is proposed to install a type 3 pumping station in the north east corner of the proposed site and pump the foul sewage to a new discharge manhole at the end of Hawthorn Avenue. From there it will discharge by gravity to the existing foul sewer in Inniscarra View.

It is proposed to connect to the new watermain to existing watermains in Inniscarra View, at both Sweet Briar Lane and Hawthorn Avenue.

The roads network for the proposed development are designed in accordance with the DMURS Manual.

<p>2 Clogheen Business Park, Blarney Road, Cork, Ireland. T: +353 (0)21 4399799 F: +353 (0)21 4399797 E: admin@rka.ie W: www.rka.ie</p> <p>RAY KEANE & ASSOCIATES CONSULTING ENGINEERS CIVIL STRUCTURAL PROJECT MANAGEMENT</p>	Project	Proposed Housing at Ballincollig, Cork			Job Ref.
	Section	Surface Water Disposal			Sheet no./rev
	Calc. By	Date	Chck'd by	Date	App'd by
	d.t.	Sept'19	BA	Jan 20	

Surface water runoff

Exercise in looking at surface water drainage “effective area” runoff for each storm water pipe length.

Areas to be included in the “effective area” are surface areas of roofs, paths, roads, parking bays, lawns, gardens & green surfaces.

An Impermeability factor of 1.0 is used for each surface:

Manhole sections	Total Effective Runoff Area
S01-S02	1590 m ²
S02-S03	192 m ²
S03-S04	1642 m ²
S04-S05	2000 m ²
S06-S05	1616 m ²
S05-S07	2282 m ²
S07-S08	779 m ²
S09-S10	1020 m ²
S10-S11	148 m ²
S11-S12	1127 m ²
S12-S08	330 m ²
S8-S13	840 m ²
S13-S Tank	112 m ²

Overall Effective Runoff = Total Impermeable area = Ap = = 13,678 m²

Proposed to use Infiltration The Pluvial Cube system which consists of modular polypropylene units, low flow maintenance and self-cleaning channels.

Note prior to discharge to the soakaway, the rainwater runoff from the proposed overall development is proposed to go through a hydrocarbon interceptor & silt trap.

<p>2 Clogheen Business Park, Blarney Road, Cork, Ireland.</p> <p>T: +353 (0)21 4399799 F: +353 (0)21 4399797 E: admin@rka.ie W: www.rka.ie</p> <p>RAY KEANE & ASSOCIATES CONSULTING ENGINEERS CIVIL STRUCTURAL PROJECT MANAGEMENT</p>	Project Proposed Housing at Ballincollig, Cork				Job Ref. 0541000
	Section Surface Water Disposal				Sheet no./rev
	Calc. By d.t.	Date Sept'19	Chck'd by BA	Date Jan 20	App'd by
					Date

Sewers carrying domestic surface water from this proposed housing developments shall have a sewer minimum sewer size of 225mm and the gradients are to achieve self cleansing velocities.

The soakaway design in accordance with BRE365 is as follows:-

The proposed soakaway is designed for a 100yr storm plus a 10% allowance for climate change. The required depth of the soakaway is 881mm, **therefore a 900mm deep system** is selected to allow for a build-up of two modular crates 450mm deep each.

The soil infiltration rate is taken from the site testing in accordance with BRE365 undertaken by Tim O'Connor Engineering. The site testing report and appendices is appended to this report. Soil conditions encountered were similar across the testing on the site. The infiltration rate of 0.822×10^{-3} is the average infiltration rate across four 1.4m deep BRE tests.

SOAKAWAY DESIGN

In accordance with BRE Digest 365 - Soakaway design

Design rainfall intensity

Location of catchment area;	Cork
Impermeable area drained to the system;	A = 13678.0 m²
Return period;	Period = 100 yr
Ratio 60 min to 2 day rainfall of 5 yr return period;	r = 0.220
5-year return period rainfall of 60 minutes duration;	M5_60min = 17.1 mm
Increase of rainfall intensity due to global warming;	p_{climate} = 10 %

Soakaway / infiltration trench details

Soakaway type;	Rectangular
Minimum depth of pit (below incoming invert);	d = 881 mm
Width of pit;	w = 23000 mm
Length of pit;	l = 23000 mm
Percentage free volume;	V_{free} = 95 %
Soil infiltration rate;	f = 822.0 $\times 10^{-6}$ m/s
Wetted area of pit 50% full;	a_{s50} = l \times d + w \times d = 40545777 mm²

Table equations

Inflow (cl.3.3.1);	$I = M100 \times A$
Outflow (cl.3.3.2);	$O = a_{s50} \times f \times D$
Storage (cl.3.3.3);	$S = I - O$

Duration, D (min)	Growth factor Z1	M5 rainfalls (mm)	Growth factor Z2	100 year rainfall, M100 (mm)	Inflow (m ³)	Outflow (m ³)	Storage required (m ³)
5;	0.30;	5.6;	1.80;	10.1;	137.69;	10.00;	127.69

<p>2 Clogheen Business Park, Blarney Road, Cork, Ireland. T: +353 (0)21 4399799 F: +353 (0)21 4399797 E: admin@rka.ie W: www.rka.ie</p> <p>RAY KEANE & ASSOCIATES CONSULTING ENGINEERS CIVIL STRUCTURAL PROJECT MANAGEMENT</p>	Project Proposed Housing at Ballincollig, Cork					Job Ref. 0541000
	Section Surface Water Disposal					Sheet no./rev
	Calc. By d.t.	Date Sept'19	Chck'd by BA	Date Jan 20	App'd by	Date

Duration, D (min)	Growth factor Z1	M5 rainfalls (mm)	Growth factor Z2	100 year rainfall, M100 (mm)	Inflow (m ³)	Outflow (m ³)	Storage required (m ³)
10;	0.44;	8.3;	1.87;	15.5;	211.54;	19.99;	191.55
15;	0.55;	10.3;	1.91;	19.7;	269.27;	29.99;	239.29
30;	0.74;	13.9;	1.97;	27.3;	373.70;	59.97;	313.73
60;	1.00;	18.8;	2.02;	38.0;	519.84;	119.95;	399.89
120;	1.32;	24.8;	2.01;	49.9;	682.86;	239.89;	442.96
240;	1.75;	32.9;	1.95;	64.1;	876.48;	479.79;	396.69
360;	2.14;	40.3;	1.89;	76.0;	1039.49;	719.68;	319.81
600;	2.55;	47.9;	1.83;	87.5;	1196.93;	1199.47;	0.00
1440;	3.52;	66.1;	1.70;	112.5;	1538.30;	2878.72;	0.00

Required storage volume;

$$S_{req} = 442.96 \text{ m}^3$$

Soakaway storage volume;

$$S_{act} = I \square d \square w \square V_{free} = 442.96 \text{ m}^3$$

PASS - Soakaway storage volume

Time for emptying soakaway to half volume;

$$t_{s50} = S_{req} \square 0.5 / (a_{s50} \square f); = 1\text{hr } 50\text{min } 48\text{s}$$

PASS - Soakaway discharge time less than or equal to 24 hours

<p>2 Clogheen Business Park, Blarney Road, Cork, Ireland. T: +353 (0)21 4399799 F: +353 (0)21 4399797 E: admin@rka.ie W: www.rka.ie</p> <p>RAY KEANE & ASSOCIATES CONSULTING ENGINEERS CIVIL STRUCTURAL PROJECT MANAGEMENT</p>	Project	Proposed Housing at Ballincollig, Cork			Job Ref.
	Section	Surface Water Disposal			Sheet no./rev
	Calc. By	Date	Chkd'd by	Date	App'd by
	d.t.	Sept'19	BA	Jan 20	Date

CL/SFB (29)

IRISH AGREEMENT BOARD
CERTIFICATE NO. 18/0401

Alderburgh Ltd,
Solution House, Dane Street
Rochdale, OL11 4EZ
Tel: +44(0)1706 374416 Fax: 01706376785
Email: info@alderburgh.com

Pluvial Cube Attenuation and Infiltration Systems

Stürmen Sie Wasser Leitung System

PRODUCT DESCRIPTION:

This Certificate relates to the Pluvial Cube attenuation and infiltration system which comprises of modular polypropylene units which, in conjunction with a satisfactory civil engineering design, will act as either an attenuation or infiltration vessel as part of a sustainable drainage system.

The Pluvial Cube system consists of modular polypropylene units, low flow maintenance and self-cleaning channels.

USE:

The product is used as a subsurface stormwater management system, used for sub-surface water storage or as a soakaway to manage rain water run-off from impermeable surfaces. Subject to site conditions and restraints, the Pluvial Cube

system modules can be built up to create the volumetric capacity required for

- Attenuation system
- Infiltration system.
- Or a combined attenuation/infiltration system.

MANUFACTURE AND MARKETING:

The product is manufactured and marketed by:

Alderburgh Ltd,
Solution House,
Dane Street,
Rochdale,
OL11 4EZ.
Tel: +44(0)1706 374416 Fax: 01706376785
Email: info@alderburgh.com

Readers are advised to check that this Certificate has not been withdrawn or superseded by a later issue by contacting NSAI Agrément, NSAI, Santry, Dublin 9 or online at <http://www.nsai.ie>

<p>2 Clogheen Business Park, Blarney Road, Cork, Ireland. T: +353 (0)21 4399799 F: +353 (0)21 4399797 E: admin@rka.ie W: www.rka.ie</p> <p>RAY KEANE & ASSOCIATES CONSULTING ENGINEERS CIVIL STRUCTURAL PROJECT MANAGEMENT</p>	Project Proposed Housing at Ballincollig, Cork	Job Ref. 0541000			
	Section Surface Water Disposal	Sheet no./rev			
	Calc. By d.t.	Date Sept'19	Chck'd by BA	Date Jan 20	App'd by Date

Part One / Certification

1

1.1 ASSESSMENT

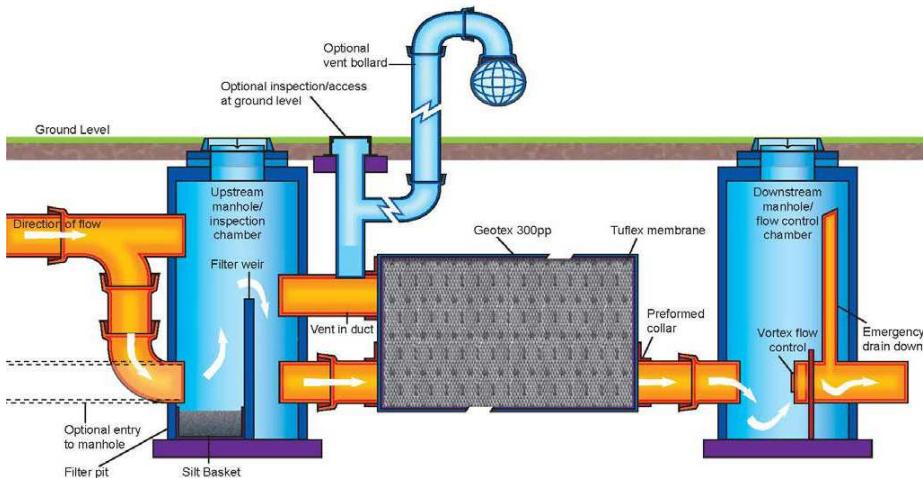
In the opinion of NSAI Agrement, the Pluvial Cube system, if used in accordance with this Certificate, meets the requirements of the Building Regulations 1997 - 2017 as indicated in Section 1.2 of this Certificate.

1.2 BUILDING REGULATIONS 1997 to 2017

REQUIREMENT:

Part A - Structure

A1 - The Pluvial Cube system, as certified in this Certificate, can be designed to ensure that the combined dead and imposed loads are sustained and transmitted to the ground in compliance with CIRIA C737 *Structural and geotechnical design of modular geocellular drainage systems*.


Part D - Materials & Workmanship

D3 - The Pluvial Cube system, as certified in this Certificate, is comprised of proper materials fit for their intended use (See Part 4 of this Certificate).

D1 - The Pluvial Cube system, as certified in this Certificate, meets the requirements of the building regulations for workmanship.

Part H - Drainage and waste water disposal.

H1 - The Pluvial Cube system, as certified in this Certificate, meets the requirements of the building regulations for the adequate disposal of surface water from the building.

<p>2 Clogheen Business Park, Blarney Road, Cork, Ireland.</p> <p>T: +353 (0)21 4399799 F: +353 (0)21 4399797 E: admin@rka.ie W: www.rka.ie</p> <p>RAY KEANE & ASSOCIATES CONSULTING ENGINEERS CIVIL STRUCTURAL PROJECT MANAGEMENT</p>	Project Proposed Housing at Ballincollig, Cork				Job Ref. 0541000
	Section Surface Water Disposal				Sheet no./rev
	Calc. By d.t.	Date Sept'19	Chck'd by BA	Date Jan 20	App'd by
					Date

Design of collection system

The proposed surface water drainage proposal includes a gravity surface water collection system which incorporates an underground drainage pipe network.

All proposed drainage works is designed to comply with and be carried out in accordance with the current edition of the *Recommendations for site development works for Housing Areas* published by the *Department of Environment and Local Government*.
Drainage works also shall comply with Irish Water/Local Authority requirements.

1 Job 054100		Proposed Housing at Ballincollig				<p>2 Clogheen Business Park, Blarney Road, Cork, Ireland. T: +353 (0)21 4399799 F: +353 (0)21 4399797 E: admin@rka.ie W: www.rka.ie</p> <p>CONSULTING ENGINEERS CIVIL STRUCTURAL PROJECT MANAGEMENT</p>				
DATE: Oct 2019		SHEET NO. 1		MADE BY: D.T.						
Pipe Section	Area m ² Contributing	Area m ² Cumulative	Flow Rate (L/sec) 50/60X6 0.0139	Pipe Size (mm)	Invert Start	Invert End	Length (m)	Gradient 1 in	Flow Rate Capacity (L/sec)	
S01-S02	1590 m ²	1590	22.08	225	28.32	27.87	18	40	105	
S02-S03	192 m ²	1782	24.75	225	27.87	27.67	8	40	105	
S03-S04	1642 m ²	3424	47.56	225	27.67	27.20	70	150	52	
S04-S05	2000 m ²	5424	75.33	225	27.20	25.35	75	43	101	
S06-S05	1616 m ²	1616	22.44	225	26.00	25.35	26	40	105	
S05-S07	2282 m ²	9322	129.47	375	25.35	25.00	50	143	206	
S07-S08	779 m ²	10101	140.29	375	25.00	24.68	23	80	279	
S09-S10	1020 m ²	1020	14.17	225	27.10	26.65	17	48	95	
S10-S11	148 m ²	1168	16.22	225	26.65	26.48	7	40	105	
S11-S12	1127 m ²	2295	31.88	225	26.48	25.00	59	40	105	
S12-S08	330 m ²	2625	36.46	225	25.00	24.68	48	150	52	
S08-S13	840 m ²	13566	188.42	375	24.68	24.50	26	144	201	
S13-S14	112 m ²	13678	189.97	375	24.50	24.35	16	106.	241	
S14-oil interceptor/soakaway	0 m ²	13678	189.97	375	24.50	24.35	16	106.	241	

Project Proposed Housing at Poulavone, Ballincollig				Job Ref. 0541000	
Section Foul wastewater discharge				Sheet no./rev	
Calc. By d.t.	Date Sept 2019	Chkd by b.a	Date Sept 2019	App'd by	Date

--	--	--

Project Proposed Housing at Poulavone, Ballincollig				Job Ref. 0541000	
Section Water Supply				Sheet no./rev 1	
Calc. By d.t.	Date Sep 2019	Chck'd by b.a.	Date Sept 2019	App'd by	Date

Proposed Water Supply.

The new site proposal includes 70 dwellings. It is proposed to connect to existing watermains within the Inniscarra View estate.
Please refer to proposed watermain layout.

The water demand includes : Average domestic daily demand in the development is established based on daily per-capita consumption, house occupancy, number of properties. For design purposes the average daily domestic demand is based on a per-capita consumption of 150 l/person/day and an average occupancy ratio of 2.7 persons per dwelling.

70 dwellings : $70 \times 150 \times 2.7$

Total average daily demand = 28350 liters

The average day/peak week demand should be taken a 1.25 times the average daily domestic demand.

Total average day/peak demand = $28350 \times 1.25 = 35437$ liters

The peak demand for sizing of the pipe network will normally be 2.1 times the average day, peak week demand.

Total average day/peak demand = $28350 \times 2.1 = 59535$ l/day or 0.689 l/sec

Project Proposed Housing at Poulavone, Ballincollig				Job Ref. 0541000	
Section Proposed roads and traffic calming design				Sheet no./rev 1	
Calc. By d.t.	Date Sept 2019	Chck'd by b.a.	Date Jan 2020	App'd by	Date

Proposed roads and traffic calming design

This proposed new development is directly to the west of the existing estate Inniscarra View on the eastern side of Ballincollig Village. The proposed development is intended to be served by extending two cul de sacs on Inniscarra View into the site and creating a loop.

Please find attached aerial photo of the site.

The proposal is for 70 dwellings.

Please refer to proposed roads and roads details layout.

There are existing roads Inniscarra View already in place adjacent to the site. It is proposed to connect the new development to the existing road and footpath network.

All proposed roads to comply with and be carried out in accordance with the current edition of the *Recommendations for site development works for Housing Areas* published by the *Department of Environment and Local Government*. Road works also shall comply with Local Authority requirements.

Proposed traffic calming details have been included and are proposed to be agreed with the Local Authority. Proposed roads and footpaths are to be in line

Project Proposed Housing at Poulavone, Ballincollig				Job Ref. 0541000	
Section Proposed roads and traffic calming design				Sheet no./rev 1	
Calc. By d.t.	Date Sept 2019	Chck'd by b.a.	Date Jan 2020	App'd by	Date

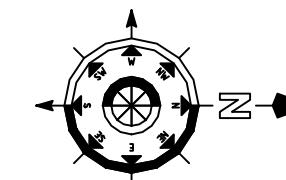
<p>with DMURS(Design Manual for Urban Roads and Streets). The internal access roadways to serve the proposed overall development is to be 5.5m and the footpath widths to be 2.0m. Road alignments and vertical deflections are incorporated as to limit vehicle speeds and facilitate pedestrian movement. Tactile paving is to be provided at uncontrolled crossings. Turning bays are proposed to be provided.</p> <p>Car Parking shall be provided. There are 162 car spaces provided in the proposed development broken down as follows:-</p> <table> <tbody> <tr> <td>Regular parking space</td><td>112</td></tr> <tr> <td>Disabled p'king space</td><td>5 2No. Private & 3 Public</td></tr> <tr> <td>Visitors parking space</td><td>32 Including accessible and future provision for 2No. EV charging points</td></tr> <tr> <td>Total dedicated parking</td><td>149</td></tr> </tbody> </table> <p>Road works are proposed to comply with the requirements of "Specification for Road Works" and Cork County Council roads and estates department requirements.</p>	Regular parking space	112	Disabled p'king space	5 2No. Private & 3 Public	Visitors parking space	32 Including accessible and future provision for 2No. EV charging points	Total dedicated parking	149
Regular parking space	112							
Disabled p'king space	5 2No. Private & 3 Public							
Visitors parking space	32 Including accessible and future provision for 2No. EV charging points							
Total dedicated parking	149							

PROPOSED DRAINAGE LAYOUT

卷之三

Day	Date	Driver	Distance Travelled
A	11/10/2012	John	100
B	12/10/2012	John	100
C	13/10/2012	John	100
D	14/10/2012	John	100
E	15/10/2012	John	100
F	16/10/2012	John	100
G	17/10/2012	John	100
H	18/10/2012	John	100
I	19/10/2012	John	100
J	20/10/2012	John	100
K	21/10/2012	John	100
L	22/10/2012	John	100
M	23/10/2012	John	100
N	24/10/2012	John	100
O	25/10/2012	John	100
P	26/10/2012	John	100
Q	27/10/2012	John	100
R	28/10/2012	John	100
S	29/10/2012	John	100
T	30/10/2012	John	100
U	31/10/2012	John	100
V	01/11/2012	John	100
W	02/11/2012	John	100
X	03/11/2012	John	100
Y	04/11/2012	John	100
Z	05/11/2012	John	100

Cork City Council
Project:
**Gelatin Biscuits, Carrigalane,
Ballycotton, Co. Cork**


Proposed Drainage Layout	
Designated:	Drainer: D.T. Date: April 19
Eng. Chk:	Drawn: 1:500 @ A1
Project No:	054000
Draining No:	Station: PL1
02	Planing Flr:

LEGEND:

- PROPOSED FOUL SEWER (Red arrow)
- PROPOSED STORM SEWER (Blue arrow)
- PROPOSED RISING MAIN (Green arrow)
- EXISTING FOUL MANHOLE (Blue circle)
- PROPOSED STORM MANHOLE (Blue circle)
- PROPOSED GULLY (Black square)
- PROPOSED INSPECTION CHAMBER (Black square)
- EXISTING FOUL SEWER (Black dashed line)
- EXISTING STORM SEWER (Grey dashed line)

NOTES:

- PROPOSED RISING MAIN (TO IN STANDARDS VENTED)
- GRAVITY FALL TO EXISTING FOUL SEWER
- PROPOSED 80mm RISING MAIN
- Unlined sewer lines have been converted to concrete pipe to allow for a 100 year life span in 2020
- Hydrocarbon Interceptor Silt Trap

卷之三

BRE365 Test Report

Client: RKA Consulting Engineers & Cork City Council

Site Address: Poulavane, Ballincollig, Co. Cork

Investigation Date: 28/08/2019

TIM O' CONNOR
ENGINEERING SERVICES LIMITED
Chartered Engineers

Table of Contents

1 Scope	3
2 Desk Study	3
3 On-Site Field Works	4
4 BRE365 Infiltration Tests	4
5 On-Site Ground and Groundwater Conditions	5
6 Infiltration Test Results	5
Appendix A - Limitations and Exclusions	7
Appendix B - Photographic Record	8
Appendix C - Drawings	12
Appendix D - Desk Study Maps	15
Appendix E - Calculations	19

TIM O' CONNOR

ENGINEERING SERVICES LIMITED

Chartered Engineers

1 Scope

In August 2019, Tim O'Connor Engineering Services Limited on behalf of their Clients, RKA Consulting Engineers and Cork City Council, were commissioned to undertake site investigations at Poulavane, Ballincollig, Co. Cork. The site is considered a greenfield site which has become quite overgrown. The purpose of this investigation was to assess the drainage and infiltration characteristics of the site for soakaway design to be completed by others. It is proposed to construct a residential development and associated works at the subject site.

The scope of the task included:

1. Create temporary access from main road to Ballincollig, close to poulavane Roundabout. Restore to previous condition on completion of works.
2. Carry out 4 No. infiltration tests in accordance with BRE365 at depths of 0.9m and 4 No. infiltration tests in accordance with BRE365 at depths of 2.5m (or to top of rock if shallower than 2.5m). Infiltration tests were carried out at the locations depicted on the drawing provided.
3. Prepare a report with the infiltration test result for each trial pit.

2 Desk Study

GSI (Geological Survey of Ireland) Data indicate that a DPUL (Dinantian Pure Unbedded Limestone) Formation underlies the site. A few hundred meters to the Southeast a DPBL (Dinantian Pure Bedded Limestone) Formation is present. The presence of limestone indicates the possibility of karst features. Please refer to Fig. 1 - Appendix D (Desk Study Maps).

GSI Data indicate that the subsoil underlying the site is TDSc (Till derived from Devonian Sandstones). Please refer to Fig. 2 - Appendix D (Desk Study Maps).

TIM O' CONNOR

ENGINEERING SERVICES LIMITED

Chartered Engineers

GSI Data indicate that the soil (topsoil) underlying the site is AminDW (Acid Brown Earths, Brown Podzolics - Deep Well Drained Mineral - Mainly Acidic). Please refer to Fig. 3 - Appendix D (Desk Study Maps).

3 On-Site Field Works

The on-site field works were completed on the 28th of August 2019 using a 20 ton tracked excavator and a 12m³ water tanker. The field works were carried out in general accordance with BS 5930 (1999) - Code of Practice for Site Investigation and Part 9 of BS 1377 (1990) - Method of Tests for Soil for Civil Engineering Purposes, *in situ* Tests.

No assessment of levels or elevations was undertaken. No survey of the 'as excavated' trial pits was undertaken and the locations are provided below for reference only.

4 BRE365 Infiltration Tests

3 No. trail pits (1A, 2A & 3A) were excavated to depths of 0.9m bgl (below existing ground level). Under the instruction of Brendan Ahern on-site (RKA Consulting Engineers, trial pit 4A was excavated to a depth of 0.75m bgl. 4 No. trail pits (1B, 2B, 3B & 4B) were excavated to a depth where bedrock was encountered. The depth to bedrock was consistent for each trial pit excavated varying between 1350mm bgl and 1400m bgl across the site. The purpose of excavating the trial pits was to undertake soakaway testing in general accordance with BRE Digest 365 (2007) - Soakaway Design Standards.

Each trial pit was filled with water, to 400mm over the base of the pit, and allowed to drain until almost empty. The time taken for the water to fall from 75% effective depth (300mm over base) to 25% effective depth (100mm over base) was noted. This procedure was repeated three times for each trial pit.

5 On-Site Ground and Groundwater Conditions

Ground conditions encountered on-site were dry and firm under foot. The site was very overgrown with trees, bushes and other vegetation.

Limestone bedrock was encountered at a depth of between 1350mm bgl and 1400mm bgl in the trial pits excavated at the site. The bedrock was overlain by a subsoil and topsoil layer.

No groundwater was encountered in any of the trial pits over the duration of the fieldworks. It should be noted that the duration of fieldwork did not permit the recording of equilibrium groundwater levels for any groundwater water strike. Groundwater conditions observed in the pits are only those over the period of the on-site investigations. Groundwater levels may be subject to seasonal and climatic variations.

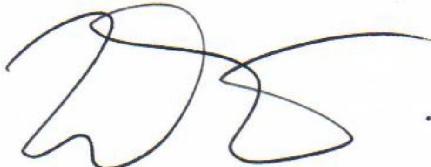
6 Infiltration Test Results

The infiltration test results calculated for each of the trial pits is summarised in Table 1 below. This table should be read in conjunction with Dwg. 1 and Dwg. 2 of Appendix C (Drawings).

Trial Pit No.	Pit Depth (m)	Infiltration Rate (m/s)
1A	0.9	7.06×10^{-4}
1B	1.4	1.61×10^{-4}
2A	0.9	1.54×10^{-3}
2B	1.4	1.32×10^{-3}
3A	0.9	6.29×10^{-4}
3B	1.35	6.96×10^{-4}
4A	0.75	2.22×10^{-3}
4B	1.4	1.11×10^{-3}

Table 1. Infiltration Rate Summary

TIM O' CONNOR


ENGINEERING SERVICES LIMITED

Chartered Engineers

The results of the infiltration tests for each of the trial pits above indicates that infiltration rates were all very high in relative terms. This indicates a very high permeability of the soil and underlying bedrock. In some cases it was difficult to fill the trial pits, using a 150mm diameter hose from the water tanker, as the water was percolating from the trial pits at such a fast rate. Due to the fact that the underlying bedrock formation is limestone, it is likely that the existence of karst features, in the underlying bedrock, contributed towards the high infiltration rates encountered.

According to SuDS Manual C753 (2015), infiltration viability should be given full consideration where an infiltration rate of 10^{-6} m/s or greater exists on the site (subject to geotechnical and contamination considerations). The values measured at the site are considerably better than this limit. Suitability for the construction of soakaways to control surface (storm) water will be dependent on the areas to be drained and the size available plan area for the proposed soakaways.

Signed:

Date: 29 August 2019

Tim O' Connor BEng CEng MIEI CEM MSc
Tim O' Connor engineering Services limited

Appendix A - Limitations and Exclusions

1. No responsibility can be held by Tim O' Connor Engineering Services Limited for ground conditions between or outside of exploratory locations.
2. Planning permission and other building control matters are not considered. Inspections do not cover legal rights of ownership of the site on which the dwelling is located.
3. The scope of the works has been defined by others. Tim O' Connor Engineering Services Limited have provided for the interpretation of this information. Additional works may form part of a more detailed investigation. This report may be subject to change where further information becomes available.
4. No account has been taken of potential subsidence or ground movement due to mineral extraction, mining works or karstification below or in proximity to the site, unless specifically addressed.
5. No formal enquiries or investigations were conducted with regard to the potential contamination of the site or neighbouring land.
6. Reports issued shall be for the private and confidential use of the clients for whom the report is undertaken and shall not be reproduced in whole or in part or relied upon by third parties for any use without our express written agreement from Tim O' Connor Engineering Services Limited. Tim O' Connor Engineering Services Limited accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

TIM O' CONNOR

ENGINEERING SERVICES LIMITED

Chartered Engineers

Appendix B - Photographic Record

Trial Pit 1A

Trial Pit 1B

TIM O' CONNOR

ENGINEERING SERVICES LIMITED

Chartered Engineers

Trial Pit 2A

Trial Pit 2B

TIM O' CONNOR

ENGINEERING SERVICES LIMITED

Chartered Engineers

Trial Pit 3A

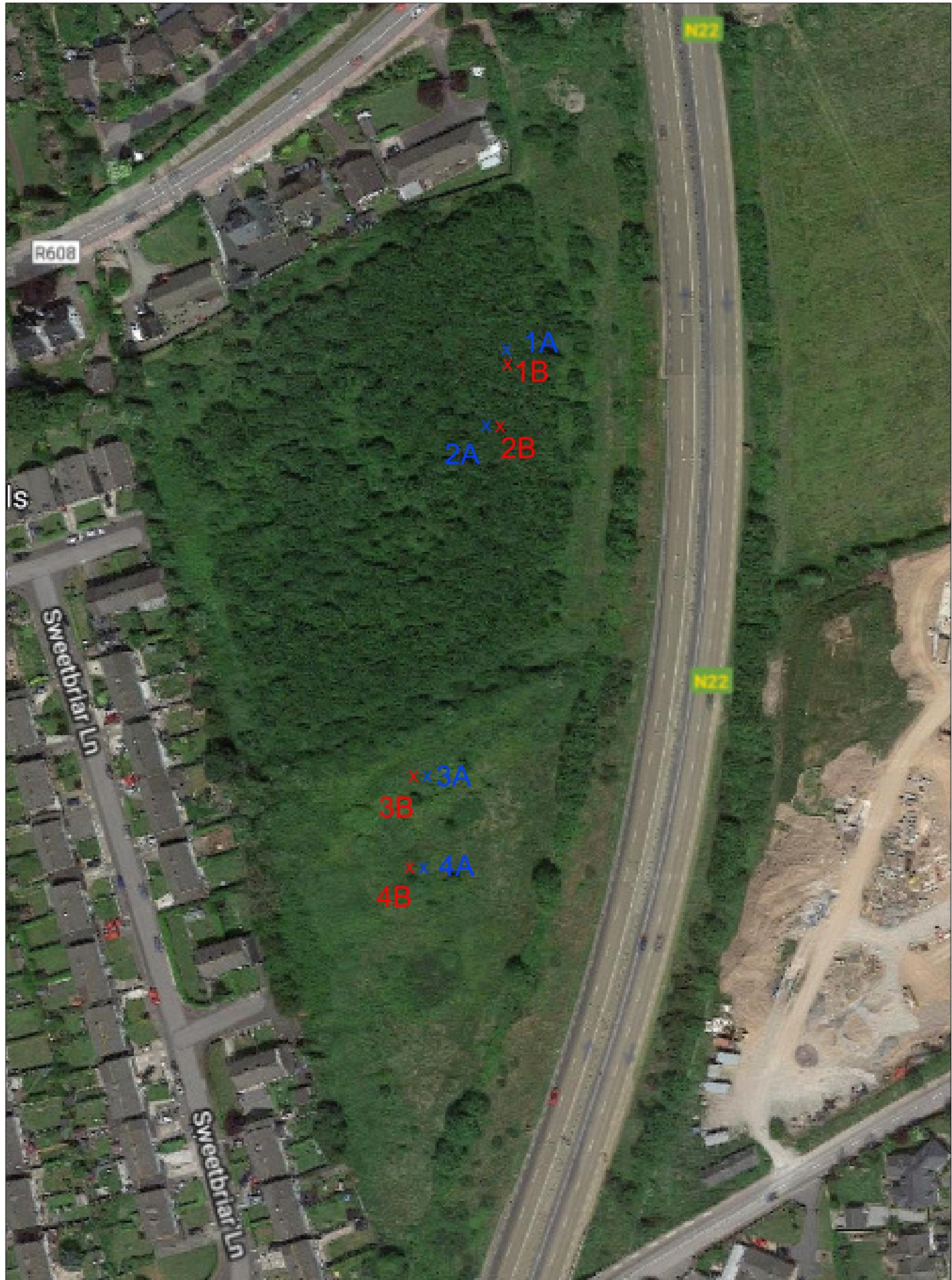
Trial Pit 3B

TIM O' CONNOR

ENGINEERING SERVICES LIMITED

Chartered Engineers

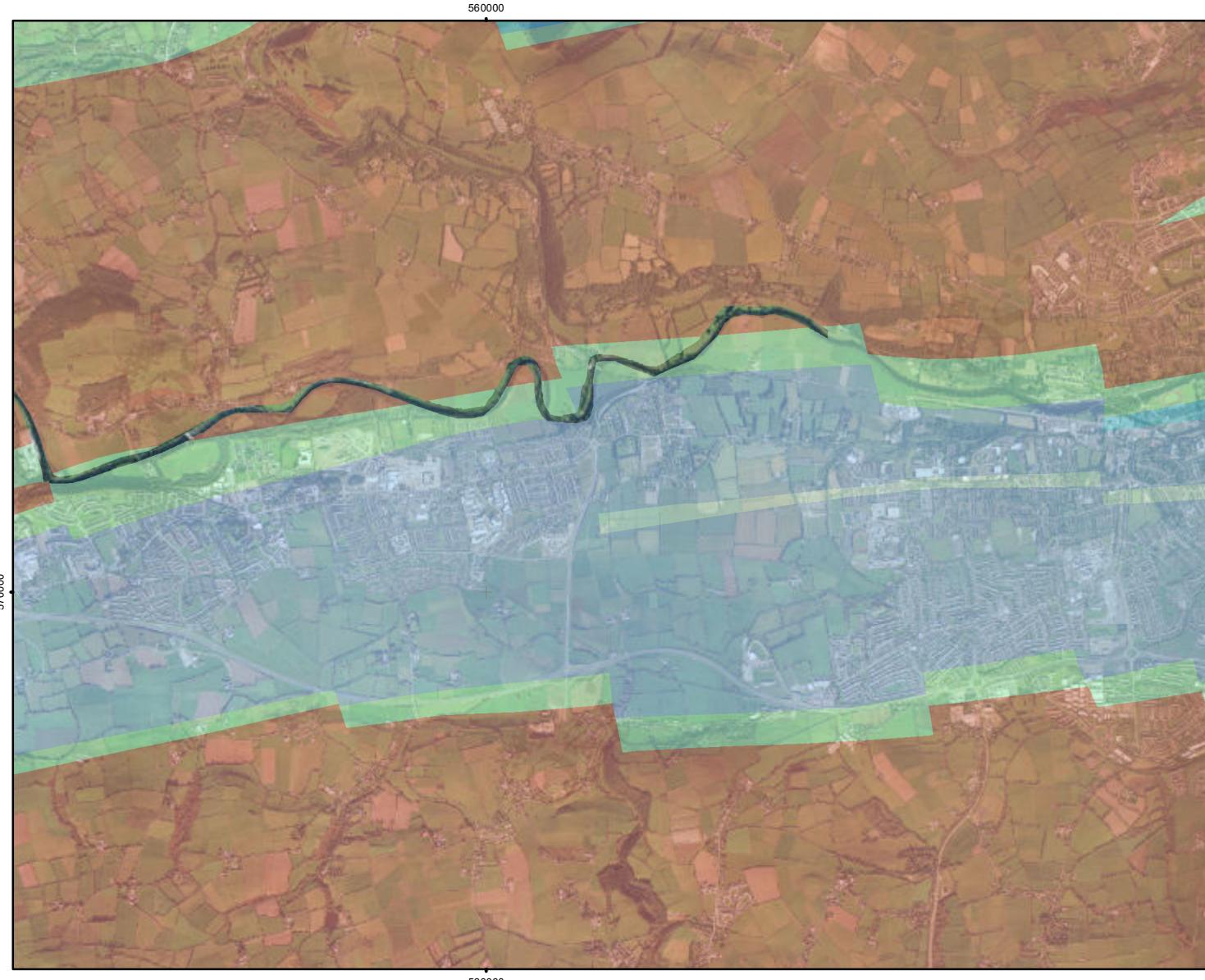
Trial Pit 4A



Trial Pit 4B

TIM O' CONNOR
ENGINEERING SERVICES LIMITED
Chartered Engineers

Appendix C - Drawings



TIM O' CONNOR
ENGINEERING SERVICES LIMITED
Chartered Engineers

Appendix D - Desk Study Maps

Bedrock Map - Ballincollig Area

Scale: 1:50,000

Geological Survey Ireland

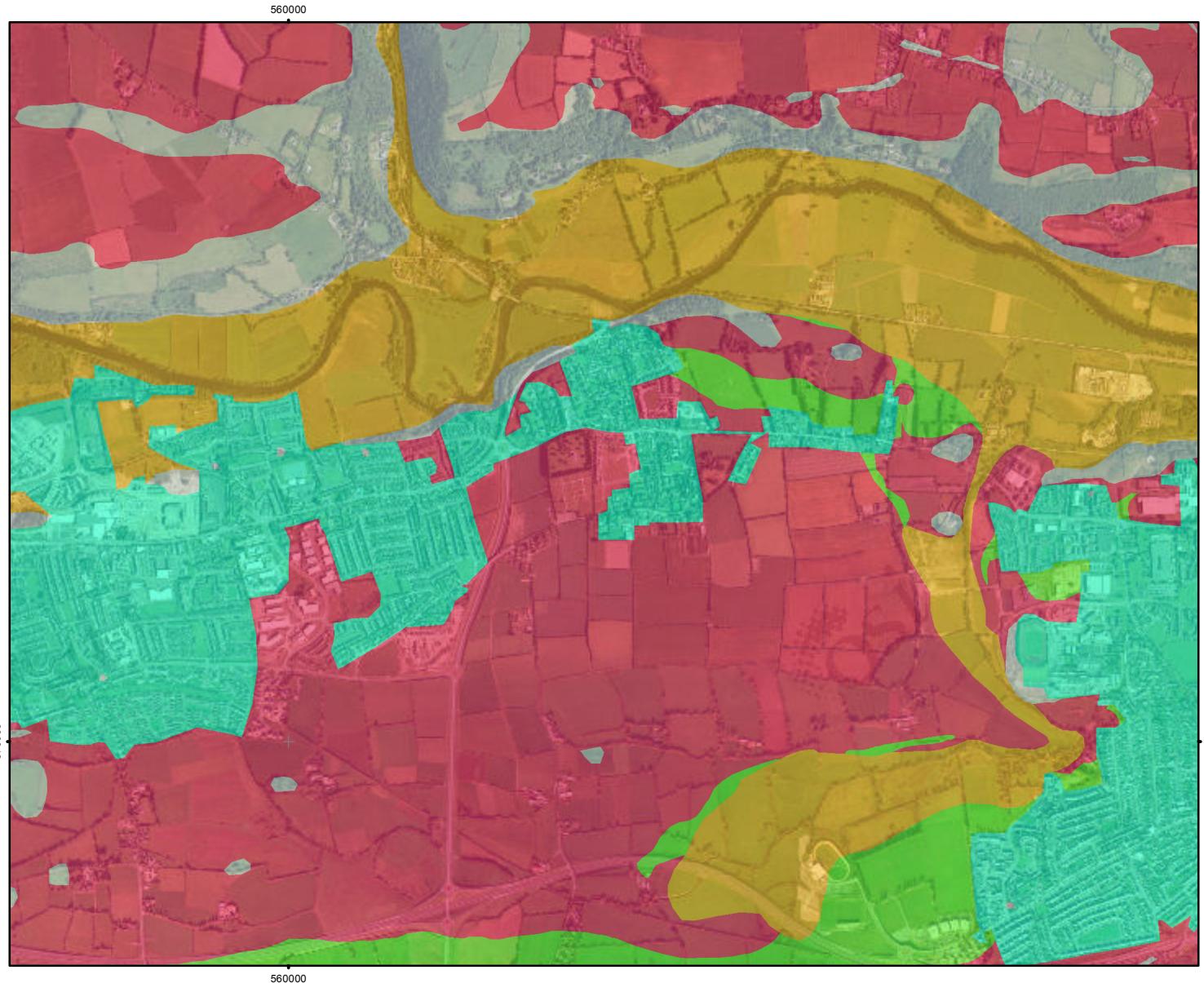
0 0.35 0.7 1.4 mi
0 0.5 1 2 km

Map Centre Coordinates (ITM) 561,004 570,782
8/27/2019, 1:39:29 PM

Ordnance Survey Ireland Licence No. EN 0047219
© Ordnance Survey Ireland/Government of Ireland
© Geological Survey Ireland/Government of Ireland

This map and its data may not be used or reproduced for commercial purposes without the prior written permission of Copyright holders.
This map is a user generated static output from an Internet mapping site and is for general reference only.
Data layers that appear on this map may or may not be accurate, current, or otherwise reliable.

Legend


Groundwater Rock Units

- Dinantian Pure Bedded Limestones
- Dinantian Pure Unbedded Limestones
- Dinantian Lower Impure Limestones
- Dinantian Mudstones and Sandstones (Cork Group)
- Devonian Old Red Sandstones

Fig. 1

Subsoil Map

Scale: 1:25,000

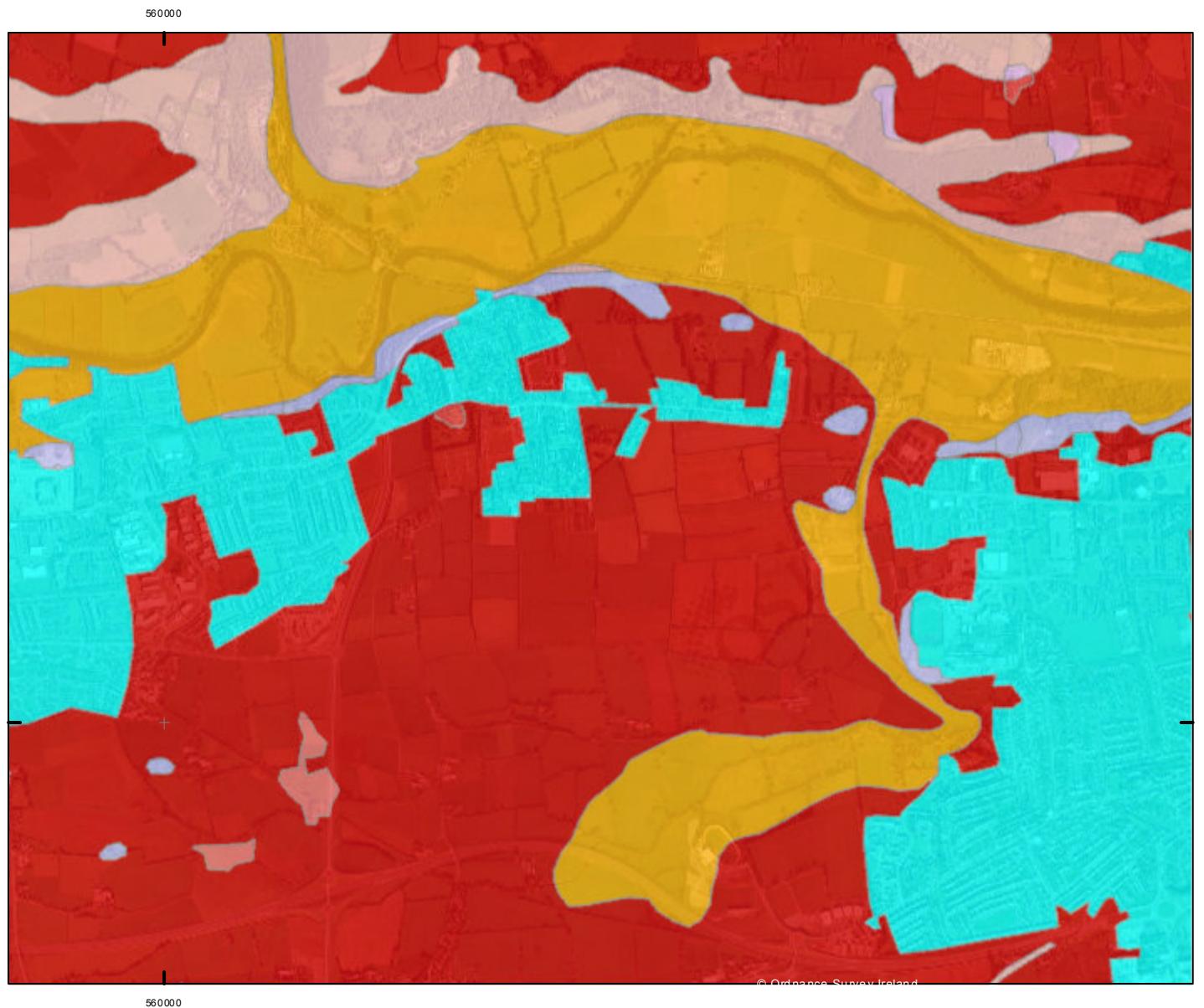
Geological Survey Ireland

0 0.175 0.35 0.7 mi
0 0.275 0.55 1.1 km

Map Centre Coordinates (ITM) 561,278 571,003
8/29/2019, 11:42:13 AM

Ordnance Survey Ireland Licence No. EN 0047219
© Ordnance Survey Ireland/Government of Ireland
© Geological Survey Ireland/Government of Ireland

This map and its data may not be used or reproduced for commercial purposes without the prior written permission of Copyright holders.
This map is a user generated static output from an Internet mapping site and is for general reference only.
Data layers that appear on this map may or may not be accurate, current, or otherwise reliable.


Legend

Quaternary Sediments

- A, Alluvium
- GDSs, Gravels derived from Devonian sandstones
- Rck, Bedrock outcrop or subcrop
- TDSs, Till derived from Devonian sandstones
- Urban

Fig. 2

Soil Map - Ballincollig Area

Scale: 1:25,000
Geological Survey Ireland

PSI Licence

This map and its data may not be used or reproduced for commercial purposes without the prior written permission of Copyright holders. This map is a user generated static output from an Internet mapping site and is for general reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable.

Map Centre Coordinates (ITM) 561,721 570,846

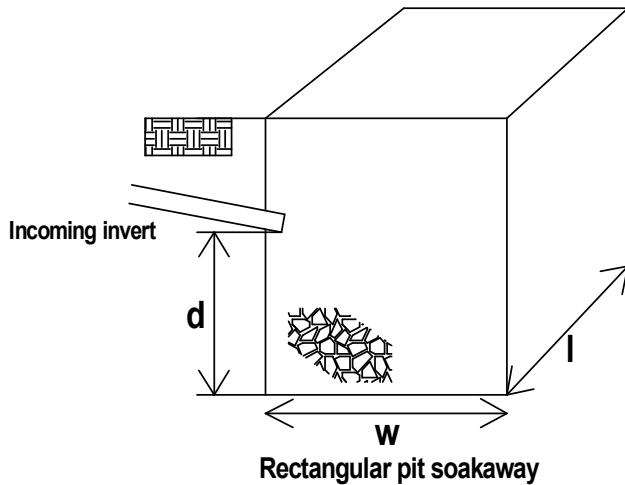
8/27/2019, 1:52:09

Ordnance Survey Ireland Licence No. EN 0047216
© Ordnance Survey Ireland/Government of Ireland
© Geological Survey Ireland/Government of Ireland

Legend

Teagasc Soils

AminDW - Deep well drained mineral (Mainly acidic)	rocky, peaty/non-peaty... complexes (Mainly basic)
AminPD - Mineral	BktPt - Blanket peat
poorly drained (Mainly acidic)	FenPt - Fen peat
AminPDPT - Peaty	RsPt - Raised Peat
poorly drained mineral (Mainly acidic)	Cut -
AminSW - Shallow	Cutover/cutaway peat
well drained mineral (Mainly acidic)	AlluvMIN - Alluvial (mineral)
AminSP - Shallow	AlluvMRL - Alluvial (marl)
poorly drained mineral (Mainly acidic)	Lac - Lacustrine type soils
AminSPPT - Shallow	Scree - Scree
peaty poorly drained mineral (Mainly acidic)	AeoUND - Aeolian
AminSRPT - Shallow, rocky, peaty/non-peaty... complexes (Mainly acidic)	undifferentiated
BminDW - Deep well drained mineral (Mainly basic)	MarSands - Marine sand and gravel
BminPD - Mineral	MarSed -
poorly drained (Mainly basic)	Marine/estuarine sediments
BminPDPT - Peaty	Made - Made ground
poorly drained mineral (Mainly basic)	Water - Water
BminSW - Shallow	Unclass
well drained mineral (Mainly basic)	
BminSP - Shallow	
poorly drained mineral (Mainly basic)	
BminSPPT - Shallow	
peaty poorly drained mineral (Mainly basic)	


Fig. 3

TIM O' CONNOR
ENGINEERING SERVICES LIMITED
Chartered Engineers

Appendix E - Calculations

BRE DIGEST 365 - Trial Pit No.

1A

(1) Soil infiltration rate (BRE digest 365)

Length of trial pit; $l_{trial} = \boxed{3000}$ mm Width of trial pit; $b_{trial} = \boxed{1000}$ mm

Depth of trial pit (below invert) $d_{trial} = \boxed{400}$ mm Free volume (if fill used); $V_{trial} = \boxed{100}$ %;

75% depth of pit; $d_{75} = (d_{trial} \times 0.75) = 300$ mm

50% depth of pit; $d_{50} = (d_{trial} \times 0.50) = 200$ mm

25% depth of pit; $d_{25} = (d_{trial} \times 0.25) = 100$ mm

Test 1 - time to fall from 75% depth to 25% $T_1 = \boxed{2.64}$ min

Test 2 - time to fall from 75% depth to 25% $T_2 = \boxed{2.53}$ min

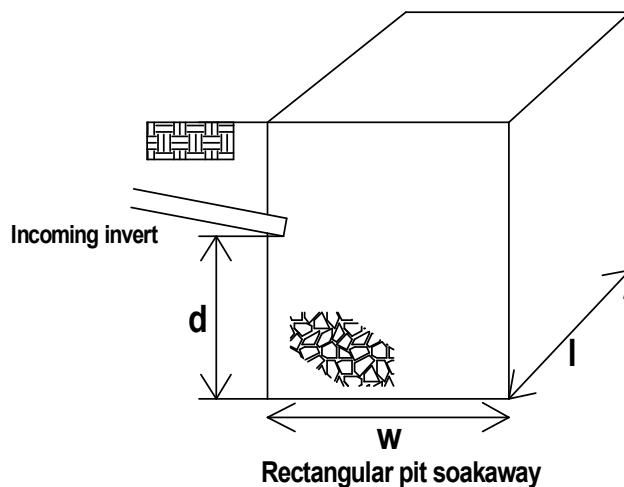
Test 3 - time to fall from 75% depth to 25% $T_3 = \boxed{3.08}$ min

Longest time to fall from 75% depth $t_{lg} = \max(T_1, T_2, T_3) = 3.08$ min

Storage volume from 75% to 25% $V_{p75_25} = (l_{trial} \times b_{trial} \times (d_{75} - d_{25})) \times V_{trial} = 0.60 \text{ m}^3$

Internal surface area to 50% depth; $a_{p50} = ((l_{trial} \times b_{trial}) + (l_{trial} + b_{trial}) \times 2 \times d_{50}) = 4.60 \text{ m}^2$

Surface area of soakaway to 50% $A_{s50} = 2 \times (l_{trial} + b_{trial}) \times d_{trial} / 2 = 1.60 \text{ m}^2$


Soil infiltration rate; $f = V_{p75_25} / (a_{p50} \times t_{lg}) = 7.06E-04 \text{ m/s}$

Trial Pit No:	1A
Pit Depth	900
Pit Length	3000
Pit Width	1000
Tested Depth	400
25% - 75% of Tested Depth	200

Time to fall 100mm (minutes)		Average (100mm)	Average (75-25%)
T1 (100mm)	T2 (100mm)		
1.57	1.07	1.32	2.64
1.1	1.43	1.27	2.53
1.4	1.68	1.54	3.08

BRE DIGEST 365 - Trial Pit No.

1B

(1) Soil infiltration rate (BRE digest 365)

Length of trial pit; $l_{trial} = 2700$ mm Width of trial pit; $b_{trial} = 1000$ mm

Depth of trial pit (below invert) $d_{trial} = 400$ mm Free volume (if fill used); $V_{trial} = 100$ %;

75% depth of pit; $d_{75} = (d_{trial} \times 0.75) = 300$ mm

50% depth of pit; $d_{50} = (d_{trial} \times 0.50) = 200$ mm

25% depth of pit; $d_{25} = (d_{trial} \times 0.25) = 100$ mm

Test 1 - time to fall from 75% depth to 25% $T_1 = 8.43$ min

Test 2 - time to fall from 75% depth to 25% $T_2 = 13.18$ min

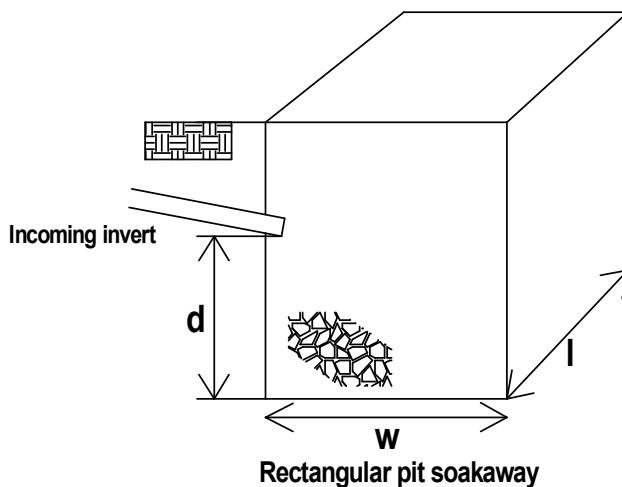
Test 3 - time to fall from 75% depth to 25% $T_3 = 13.36$ min

Longest time to fall from 75% depth $t_{lg} = \max(T_1, T_2, T_3) = 13.36$ min

Storage volume from 75% to 25% $V_{p75_25} = (l_{trial} \times b_{trial} \times (d_{75} - d_{25})) \times V_{trial} = 0.54 \text{ m}^3$

Internal surface area to 50% depth; $a_{p50} = ((l_{trial} \times b_{trial}) + (l_{trial} + b_{trial}) \times 2 \times d_{50}) = 4.18 \text{ m}^2$

Surface area of soakaway to 50% $A_{s50} = 2 \times (l_{trial} + b_{trial}) \times d_{trial} / 2 = 1.48 \text{ m}^2$


Soil infiltration rate; $f = V_{p75_25} / (a_{p50} \times t_{lg}) = 1.61E-04 \text{ m/s}$

Trial Pit No:	1B
Pit Depth	1400
Pit Length	2700
Pit Width	1000
Tested Depth	400
25% - 75% of Tested Depth	200

Time to fall 100mm (minutes)		Average (100mm)	Average (75-25%)
T1 (100mm)	T2 (100mm)		
5.18	3.25	4.22	8.43
6.93	6.25	6.59	13.18
7.24	6.12	6.68	13.36

BRE DIGEST 365 - Trial Pit No.

2A

(1) Soil infiltration rate (BRE digest 365)

Length of trial pit; $l_{trial} = \boxed{2400}$ mm Width of trial pit; $b_{trial} = \boxed{1000}$ mm

Depth of trial pit (below invert) $d_{trial} = \boxed{400}$ mm Free volume (if fill used); $V_{trial} = \boxed{100}$ %;

75% depth of pit; $d_{75} = (d_{trial} \times 0.75) = 300$ mm

50% depth of pit; $d_{50} = (d_{trial} \times 0.50) = 200$ mm

25% depth of pit; $d_{25} = (d_{trial} \times 0.25) = 100$ mm

Test 1 - time to fall from 75% depth to 25% $T_1 = \boxed{1.33}$ min

Test 2 - time to fall from 75% depth to 25% $T_2 = \boxed{1.38}$ min

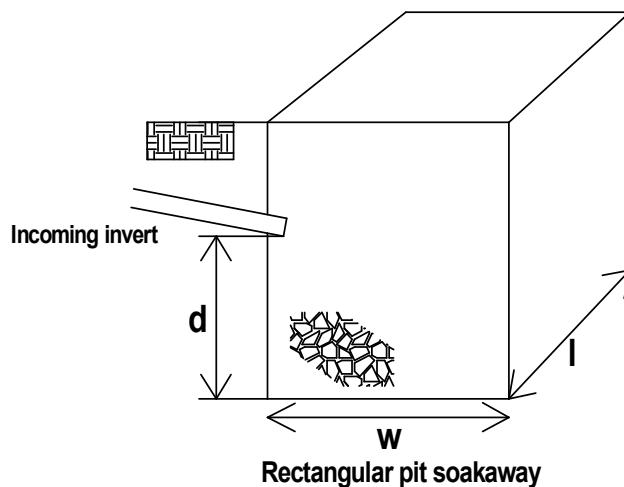
Test 3 - time to fall from 75% depth to 25% $T_3 = \boxed{1.36}$ min

Longest time to fall from 75% depth $t_{lg} = \max(T_1, T_2, T_3) = 1.38$ min

Storage volume from 75% to 25% $V_{p75_25} = (l_{trial} \times b_{trial} \times (d_{75} - d_{25})) \times V_{trial} = 0.48 \text{ m}^3$

Internal surface area to 50% depth; $a_{p50} = ((l_{trial} \times b_{trial}) + (l_{trial} + b_{trial}) \times 2 \times d_{50}) = 3.76 \text{ m}^2$

Surface area of soakaway to 50% $A_{s50} = 2 \times (l_{trial} + b_{trial}) \times d_{trial} / 2 = 1.36 \text{ m}^2$


Soil infiltration rate; $f = V_{p75_25} / (a_{p50} \times t_{lg}) = 1.54E-03 \text{ m/s}$

Trial Pit No:	2A
Pit Depth	900
Pit Length	2400
Pit Width	1000
Tested Depth	400
25% - 75% of Tested Depth	200

Time to fall 100mm (minutes)		Average (100mm)	Average (75-25%)
T1 (100mm)	T2 (100mm)		
0.7	0.63		0.67 1.33
0.75	0.63		0.69 1.38
0.74	0.62		0.68 1.36

BRE DIGEST 365 - Trial Pit No.

2B

(1) Soil infiltration rate (BRE digest 365)

Length of trial pit; $l_{trial} = 2600$ mm Width of trial pit; $b_{trial} = 1000$ mm

Depth of trial pit (below invert) $d_{trial} = 400$ mm Free volume (if fill used); $V_{trial} = 100$ %;

75% depth of pit; $d_{75} = (d_{trial} \times 0.75) = 300$ mm

50% depth of pit; $d_{50} = (d_{trial} \times 0.50) = 200$ mm

25% depth of pit; $d_{25} = (d_{trial} \times 0.25) = 100$ mm

Test 1 - time to fall from 75% depth to 25% $T_1 = 1.40$ min

Test 2 - time to fall from 75% depth to 25% $T_2 = 1.42$ min

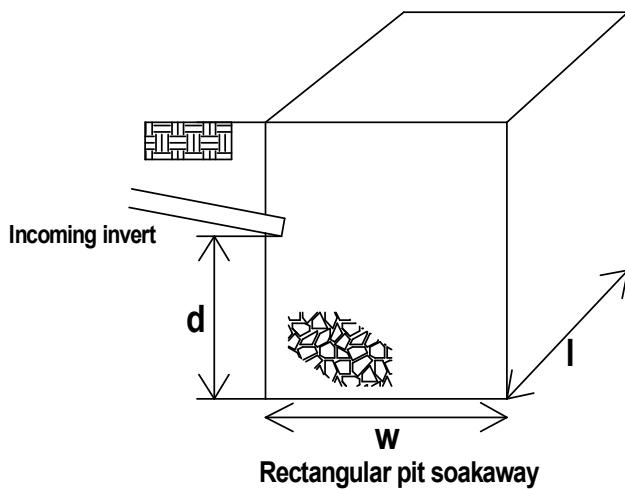
Test 3 - time to fall from 75% depth to 25% $T_3 = 1.62$ min

Longest time to fall from 75% depth $t_{lg} = \max(T_1, T_2, T_3) = 1.62$ min

Storage volume from 75% to 25% $V_{p75_25} = (l_{trial} \times b_{trial} \times (d_{75} - d_{25})) \times V_{trial} = 0.52 \text{ m}^3$

Internal surface area to 50% depth; $a_{p50} = ((l_{trial} \times b_{trial}) + (l_{trial} + b_{trial}) \times 2 \times d_{50}) = 4.04 \text{ m}^2$

Surface area of soakaway to 50% $A_{s50} = 2 \times (l_{trial} + b_{trial}) \times d_{trial} / 2 = 1.44 \text{ m}^2$


Soil infiltration rate; $f = V_{p75_25} / (a_{p50} \times t_{lg}) = 1.32E-03 \text{ m/s}$

Trial Pit No:	2B
Pit Depth	1400
Pit Length	2600
Pit Width	1000
Tested Depth	400
25% - 75% of Tested Depth	200

Time to fall 100mm (minutes)		Average (100mm)	Average (75-25%)
T1 (100mm)	T2 (100mm)		
0.87	0.53		0.70 1.40
0.77	0.65		0.71 1.42
0.82	0.8		0.81 1.62

BRE DIGEST 365 - Trial Pit No.

3A

(1) Soil infiltration rate (BRE digest 365)

Length of trial pit; $l_{trial} = 2400$ mm Width of trial pit; $b_{trial} = 1000$ mm

Depth of trial pit (below invert) $d_{trial} = 400$ mm Free volume (if fill used); $V_{trial} = 100$ %;

75% depth of pit; $d_{75} = (d_{trial} \times 0.75) = 300$ mm

50% depth of pit; $d_{50} = (d_{trial} \times 0.50) = 200$ mm

25% depth of pit; $d_{25} = (d_{trial} \times 0.25) = 100$ mm

Test 1 - time to fall from 75% depth to 25% $T_1 = 3.03$ min

Test 2 - time to fall from 75% depth to 25% $T_2 = 3.25$ min

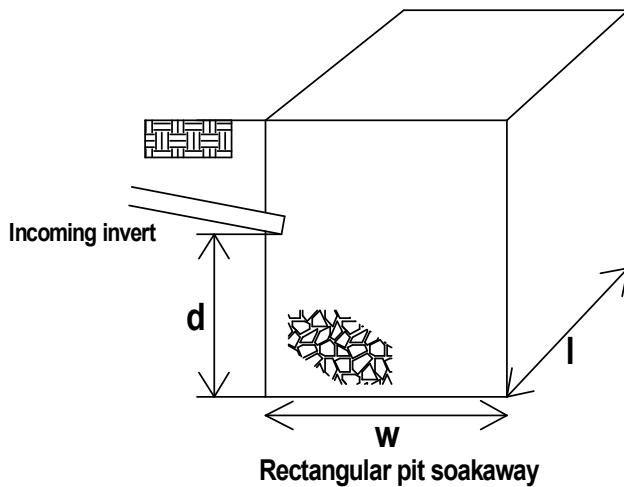
Test 3 - time to fall from 75% depth to 25% $T_3 = 3.38$ min

Longest time to fall from 75% depth $t_{lg} = \max(T_1, T_2, T_3) = 3.38$ min

Storage volume from 75% to 25% $V_{p75_25} = (l_{trial} \times b_{trial} \times (d_{75} - d_{25})) \times V_{trial} = 0.48 \text{ m}^3$

Internal surface area to 50% depth; $a_{p50} = ((l_{trial} \times b_{trial}) + (l_{trial} + b_{trial}) \times 2 \times d_{50}) = 3.76 \text{ m}^2$

Surface area of soakaway to 50% $A_{s50} = 2 \times (l_{trial} + b_{trial}) \times d_{trial} / 2 = 1.36 \text{ m}^2$


Soil infiltration rate; $f = V_{p75_25} / (a_{p50} \times t_{lg}) = 6.29E-04 \text{ m/s}$

Trial Pit No:	3A
Pit Depth	900
Pit Length	2400
Pit Width	1000
Tested Depth	400
25% - 75% of Tested Depth	200

Time to fall 100mm (minutes)		Average (100mm)	Average (75-25%)
T1 (100mm)	T2 (100mm)		
1.3	1.73		1.52 3.03
1.53	1.72		1.63 3.25
1.6	1.78		1.69 3.38

BRE DIGEST 365 - Trial Pit No.

3B

(1) Soil infiltration rate (BRE digest 365)

Length of trial pit; $l_{trial} = 2600$ mm Width of trial pit; $b_{trial} = 1000$ mm

Depth of trial pit (below invert) $d_{trial} = 400$ mm Free volume (if fill used); $V_{trial} = 100$ %;

75% depth of pit; $d_{75} = (d_{trial} \times 0.75) = 300$ mm

50% depth of pit; $d_{50} = (d_{trial} \times 0.50) = 200$ mm

25% depth of pit; $d_{25} = (d_{trial} \times 0.25) = 100$ mm

Test 1 - time to fall from 75% depth to 25% $T_1 = 3.08$ min

Test 2 - time to fall from 75% depth to 25% $T_2 = 3.07$ min

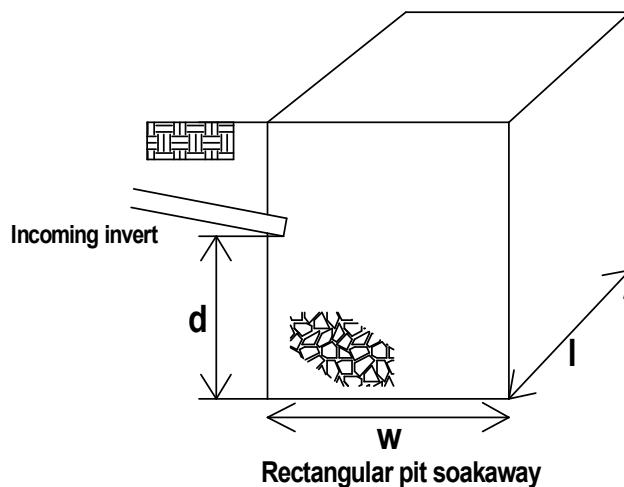
Test 3 - time to fall from 75% depth to 25% $T_3 = 2.87$ min

Longest time to fall from 75% depth $t_{lg} = \max(T_1, T_2, T_3) = 3.08$ min

Storage volume from 75% to 25% $V_{p75_25} = (l_{trial} \times b_{trial} \times (d_{75} - d_{25})) \times V_{trial} = 0.52 \text{ m}^3$

Internal surface area to 50% depth; $a_{p50} = ((l_{trial} \times b_{trial}) + (l_{trial} + b_{trial}) \times 2 \times d_{50}) = 4.04 \text{ m}^2$

Surface area of soakaway to 50% $A_{s50} = 2 \times (l_{trial} + b_{trial}) \times d_{trial} / 2 = 1.44 \text{ m}^2$


Soil infiltration rate; $f = V_{p75_25} / (a_{p50} \times t_{lg}) = 6.96E-04 \text{ m/s}$

Trial Pit No:	3B
Pit Depth	1350
Pit Length	2600
Pit Width	1000
Tested Depth	400
25% - 75% of Tested Depth	200

Time to fall 100mm (minutes)		Average (100mm)	Average (75-25%)
T1 (100mm)	T2 (100mm)		
1.15	1.93		1.54 3.08
1.22	1.85		1.54 3.07
1.07	1.8		1.44 2.87

BRE DIGEST 365 - Trial Pit No.

4A

(1) Soil infiltration rate (BRE digest 365)

Length of trial pit; $l_{trial} = 2200$ mm Width of trial pit; $b_{trial} = 1000$ mm

Depth of trial pit (below invert) $d_{trial} = 400$ mm Free volume (if fill used); $V_{trial} = 100$ %;

75% depth of pit; $d_{75} = (d_{trial} \times 0.75) = 300$ mm

50% depth of pit; $d_{50} = (d_{trial} \times 0.50) = 200$ mm

25% depth of pit; $d_{25} = (d_{trial} \times 0.25) = 100$ mm

Test 1 - time to fall from 75% depth to 25% $T_1 = 0.88$ min

Test 2 - time to fall from 75% depth to 25% $T_2 = 0.91$ min

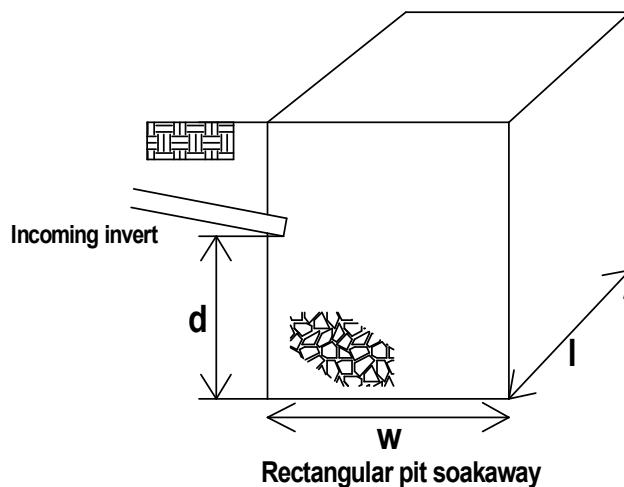
Test 3 - time to fall from 75% depth to 25% $T_3 = 0.95$ min

Longest time to fall from 75% depth $t_{lg} = \max(T_1, T_2, T_3) = 0.95$ min

Storage volume from 75% to 25% $V_{p75_25} = (l_{trial} \times b_{trial} \times (d_{75} - d_{25})) \times V_{trial} = 0.44 \text{ m}^3$

Internal surface area to 50% depth; $a_{p50} = ((l_{trial} \times b_{trial}) + (l_{trial} + b_{trial}) \times 2 \times d_{50}) = 3.48 \text{ m}^2$

Surface area of soakaway to 50% $A_{s50} = 2 \times (l_{trial} + b_{trial}) \times d_{trial} / 2 = 1.28 \text{ m}^2$


Soil infiltration rate; $f = V_{p75_25} / (a_{p50} \times t_{lg}) = 2.22E-03 \text{ m/s}$

Trial Pit No:	4A
Pit Depth	750
Pit Length	2200
Pit Width	1000
Tested Depth	400
25% - 75% of Tested Depth	200

Time to fall 100mm (minutes)		Average (100mm)	Average (75-25%)
T1 (100mm)	T2 (100mm)		
0.5	0.38		0.44
0.53	0.38		0.46
0.53	0.42		0.48

BRE DIGEST 365 - Trial Pit No.

4B

(1) Soil infiltration rate (BRE digest 365)

Length of trial pit; $l_{trial} = \boxed{2800}$ mm Width of trial pit; $b_{trial} = \boxed{1000}$ mm

Depth of trial pit (below invert) $d_{trial} = \boxed{400}$ mm Free volume (if fill used); $V_{trial} = \boxed{100}$ %;

75% depth of pit; $d_{75} = (d_{trial} \times 0.75) = 300$ mm

50% depth of pit; $d_{50} = (d_{trial} \times 0.50) = 200$ mm

25% depth of pit; $d_{25} = (d_{trial} \times 0.25) = 100$ mm

Test 1 - time to fall from 75% depth to 25% $T_1 = \boxed{1.95}$ min

Test 2 - time to fall from 75% depth to 25% $T_2 = \boxed{1.50}$ min

Test 3 - time to fall from 75% depth to 25% $T_3 = \boxed{1.10}$ min

Longest time to fall from 75% depth $t_{lg} = \max(T_1, T_2, T_3) = 1.95$ min

Storage volume from 75% to 25% $V_{p75_25} = (l_{trial} \times b_{trial} \times (d_{75} - d_{25})) \times V_{trial} = 0.56 \text{ m}^3$

Internal surface area to 50% depth; $a_{p50} = ((l_{trial} \times b_{trial}) + (l_{trial} + b_{trial}) \times 2 \times d_{50}) = 4.32 \text{ m}^2$

Surface area of soakaway to 50% $A_{s50} = 2 \times (l_{trial} + b_{trial}) \times d_{trial} / 2 = 1.52 \text{ m}^2$

Soil infiltration rate; $f = V_{p75_25} / (a_{p50} \times t_{lg}) = 1.11E-03 \text{ m/s}$

Trial Pit No:	4B
Pit Depth	1400
Pit Length	2800
Pit Width	1000
Tested Depth	400
25% - 75% of Tested Depth	200

Time to fall 100mm (minutes)		Average (100mm)	Average (75-25%)
T1 (100mm)	T2 (100mm)		
0.6	1.35		
0.65	0.85		
0.45	0.65		